
Proceedings of

DailyMeteo.org/2014 Conference

 Belgrade, Serbia 26-27 June 2014.

dailymeteo.org/2014



DailyMeteo.org/2014 
Abstracts, extended abstracts and full papers 
of the DailyMeteo.org/2014 Conference 
Belgrade, Serbia, 26-27 June 2014 
 
 
Edited by 
Branislav Bajat 
Milan Kilibarda 
 
 
For the publisher 
Dusan Najdanović 
 
 
Design and prepress 
Dosije studio doo Belgrade 
 
 
Printed by 
Dosije studio doo, Belgrade 
www.dosije.rs 
 
 
Book Circulation 
50 copies 
 
 
ISBN 978-86-7518-169-9 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
©2014 Faculty of Civil Engineering, University of Belgrade 
All copyrights reserved. Reprinting and photocopying prohibited. 



Contents

Gerard B.M. Heuvelink: ”Statistical modelling of space-time variability” . . . 6

Edzer Pebesma: ”Spatial and temporal support of meteorological observations

and predictions” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

Miguel Fernandez: ”Spatiotemporal trends in climate within redwood range” 8

Pinar Aslantas: ”Application of space-time kriging for monthly precipitation

values of lake van basin in Turkey” . . . . . . . . . . . . . . . . . . . . . 9

Petr Stepanek: ”Experiences with interpolation of daily values of various mete-

orological elements in the Czech Republic” . . . . . . . . . . . . . . . . . 12
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Abstract—Many environmental variables, such as 

precipitation, temperature and radiation, vary both in space 

and time. The space-time variability of these variables is 

governed by physical laws, which are often characterised by 

partial differential equations. However, these equations can be 

very complex and their parameters and initial and boundary 

conditions are often very poorly known. This makes it 

extremely difficult to obtain practically useful solutions. In 

such case, statistical modelling offers an alternative. Statistical 

models are no replacement for mechanistic models because 

they give less insight into governing processes and cannot 

easily be extrapolated, but they are easier to implement, 

calibrate and run. Provided that the observation density is 

sufficiently large, they often yield sufficiently accurate 

predictions of the space-time variable at unobserved points. 

Geostatistics offers a rich methodology for statistical 

modelling and prediction of spatially distributed variables. 

The basic approach is to treat the variable of interest as a sum 

of a deterministic trend and a zero-mean stochastic residual. 

The trend is often taken as a linear combination of explanatory 

variables that must be known spatially exhaustively, while the 

stochastic residual is usually assumed to be normally 

distributed and stationary. It will typically also be spatially 

correlated, as characterised by a semivariogram. With this 

model, predictions at unobserved locations can be made using 

kriging, which also quantifies the prediction error variance. 

Extension of the geostatistical model to the space-time domain 

can be done in various ways. One is to consider the spatial 

variable at multiple time points, deriving a geostatistical 

model at each of these time points and characterising the 

correlation between variables at different time points through 

a cokriging approach. However, the disadvantage of this 

approach is that it only addresses the variable at the selected 

times and not in between, and that modelling is cumbersome 

when the number of time points is moderate or large. A more 

attractive alternative is to include time as a third dimension 

and model space-time variability by means of a spatio-

temporal trend and a space-time stochastic residual. Once this 

model has been defined and calibrated it can be used to predict 

and simulate at any point in space and time, hence producing a 

‘movie’ of the spatial distribution over time. In recent years 

many advances have been made in developing theoretically 

sound space-time statistical models. The difficulty is in the 

space-time stochastic residual, because the associated 

covariance model must include zonal and geometric 

anisotropies. Popular representations of the space-time 

covariance structure are the sum-product model and the sum-

metric model. Fitting of these models to real-world data sets 

and using these models for space-time prediction and 

simulation has greatly improved in recent years due to 

advances in the spacetime and gstat packages in R. The main 

problem with defining valid space-time covariance structures 

is that these must be semi-positive definite, which is difficult 

to prove. If, however, the space-time covariance structure is 

derived from an explicit model of the space-time variable, 

such as through a space-time auto-regressive moving average 

(ARMA) model or a so-called state-space model, then the 

semi-positive definiteness is guaranteed by construction. In 

such case, spatio-temporal prediction may be done using the 

Kalman filter and Kalman smoother, which, as does kriging, 

calculate the conditional probability distribution of a target 

variable given conditioning data. The attractive property of 

space-time ARMA and state-space models is also that these 

bridge the gap with mechanistic modelling of space-time 

variability. This is because the ARMA and discrete state-space 

approach may be interpreted as discrete approximations of 

stochastic partial differential equations. There is yet a lot to be 

discovered in this research area, and if software development 

can go hand in hand with theoretical developments we may 

see major steps forward in the years to come. All statistical 

approaches described above are explained in this lecture and 

illustrated with real-world applications. 
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Abstract—Support refers to the physical size of the area, 
volume, and/or temporal duration of a measured or predicted 
data value. Support of measurements is often related to the 
physical constraints: we cannot directly observe the 
temperature of a square kilometre, not even of an area of 100 
m2; rainfall measurements also usually refer to devices with a 
catchment area of less than 1 m2. 

By choosing measurement sites carefully, we hope, by the 
idea of representativity, that measured values carry more 
information about their surroundings than when they were not 
chosen with the same care. Representativity could reflect the 
notion that we would like to be able to measure average values 
over larger areas, as local extreme conditions are typically 
avoided. 

Nevertheless, measured value and local or regional 
averages will differ. Geostatistical theory allows for predicting 
linearly aggregated (mean) values by regularizing (averaging) 
semivariances, and by predicting nonlinearly aggregated 
values by simulation. The type of aggregation (function), the 
aggregation predicate (target support), and the variability of 
the predictant all play a role here. 

Aggregation is the process of deriving a single number 
from a collection of numbers. The aggregation function may 
be simple such as in the case of mean or max, it may also be 

complex, e.g. computing catchment discharge from spatially 
distributed precipitation values. The aggregation predicate is 
the spatial area and/or temporal period over which aggregation 
takes place. Aggregation may be useful to (i) match data that 
is collected at a coarser support (ii) increase accuracy of 
predictions, and (iii) smooth out local, or short-term 
variability. 

When we want to aggregate over a continuous area but do 
not have exhaustive (continuous) measurement data available 
for this area, a model for the observation data is required to fill 
the area with missing data in with predictions. Typical models 
are stationary covariance models, as used in geostatistics. 
When, in these models, we assume the mean function to 
depend on external variables with a different support (e.g. 
derived from satellite imagery, or elevation data), we 
introduce a bias that depends on the difference of the external 
variable at the support we have it and that, at the support that 
would match that of the primary observation data. We will 
discuss where this bias comes from, and how it may be dealt 
with. 
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Abstract— Redwood (Sequoia sempervirens), once a widely 

distributed species and now limited to a narrow 50km belt along 

the west coast of North America, provides many ecosystem 

services, including reservoirs of unique biodiversity and high 

rates of carbon sequestration. Although our knowledge of the 

spatial distribution and ecophysiological traits of the species are 

relatively advanced, the spatiotemporal trends in climate within 

the species range are still unknown. Part of the reason is the 

complexity of the climate system, where fine scale sharp coastal 

energy/moisture gradients are associated with wind-driven 

upwelling of cold water in the coast of California. Coastal 

upwelling can limit increases in coastal temperatures, decoupling 

the system from synoptic conditions. Taking advantage of a very 

fine resolution time series (PRISM), for the years 1950 to 2012, 

we evaluated the nature of historic climate trends. We applied 

standard non-parametric statistics (e.g., Mann-Kendall and 

Theil-Sen) to evaluate the magnitude and the significance of 

spatio-temporal climate trends on a cell-by-cell basis. Our results 

characterize the environmental heterogeneity in climatic trends 

within the redwood range over the past 60 years, identifying 

areas of recent significant changes as well as areas of relative 

climate stability that can be used to inform natural resource 

management and planning in the face of global change. 
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Abstract— Precipitation is an important climatic variable that 

varies both in space and time. Like other climatic, meteorological, 

hydrologic and environmental variables, precipitation is measured 

from specific locations. Predictions at the locations that have no 

measurement values are obtained with interpolation techniques. 

Space-time interpolation techniques which use variables that vary 

both in space and time have received increasing attention. In this 

study space-time kriging is performed by combining spatial and 

temporal information of precipitation. The aim of the study is to 

apply space-time Universal kriging (ST-UK) method to monthly 

precipitation values measured from meteorological stations at the 

Lake Van Basin and predict precipitation at each spatial and 

temporal location. Lake Van is the largest lake of Turkey and 

located at the far-east part of the country. Lake Van is one of the 

largest closed drainage basins of the world. The Lake Van basin 

includes the lake and neighboring districts. The area of Lake Van 

Basin is used as study area in the study. The area of the basin is 

about 16.000 km2 and area of lake is about 3800 km2. Space-time 

information of precipitation is obtained from ten meteorological 

stations located over the basin and measurements are recorded for 

1981-2010 years. Elevation is used as secondary information that 

was obtained by resampling the 3 arc second SRTM (the Shuttle 

Radar Topography Mission) (approximately 90 m spatial 

resolution) to 1 km spatial resolution using the Nearest Neighbor 

algorithm. Monthly precipitation values are analyzed and predicted 

over 1*1 km spatial resolution grid. One-fold cross-validation is 

used to assess accuracy performance of space-time kriging 

technique. In this way, R-square and RMSE (Root Mean Square 

Error) are calculated and evaluated for each prediction maps.  
Keywords— Precipitation, meteorological station, Space-time 

Universal Kriging, Lake Van Basin 

I. INTRODUCTION  

Spatial kriging methods have been used for many years to 

predict variables at unmeasured locations in many disciplines. 

The first geostatistics and spatial kriging applications started 

in mining and geology. The variables used in these sciences 

can often be assumed constant in time. After understanding 

the usefulness and reliability of kriging in these disciplines, it 

was also introduced to many other disciplines within the earth 

and environmental sciences, such as meteorology, 

climatology, agronomy, soil science, hydrology, etc. Generally 

variables in these sciences vary both in time and space. 

Therefore the requirement of kriging methods for space-time 

interpolation is raised [1]. If the data have been measured in 

different time and space locations, then more data may be used 

for prediction, and this allows obtaining more accurate 

predictions, helps to parameter estimation and helps to define 

spatial and/or temporal auto-correlation in measurements [2]. 

In case of space-time kriging, to predict the value of the 

variable of interest at a specific location and time, past and 

future measurements are used to predict on the specified time. 

This may add more complexity to the kriging procedure but 

may help to gain more accurate results. 

In this study space-time Universal kriging (ST-UK) method 

is applied to monthly precipitation values measured from 10 

meteorological stations from 1981 to 2010 over the Lake Van 

basin of Turkey. The aim is to discuss applicability of space-

time kriging methods on monthly precipitation values by using 

limited number of meteorological station. 

II. STUDY AREA AND DATA 

A. Study Area 

The study area is Lake Van Basin that is located at the far 

east part of Turkey (Figure 1). The area of basin is about 

16.000 km
2
. Lake Van basin has a high topography. The high 

mountains are located at the northern and southern parts of the 

basin. The mean elevation of basin is about 2200-2400 m., 

minimum elevation is about 1500 m. and maximum elevation 

is approximately 4000 m (Figure 2). 

Lake Van which is the biggest lake of country is located at 

the basin (Figure 2). The Lake is a depression state in the 

middle of high mountains. Lake has a surface of 3574 km
2
, 

length of shoreline is 505 km,
 
and a volume of 607 km

3
. The 

lake stands at 1650 m. above sea level. The Lake is a closed 

lake without any significant outflow. With a maximum depth 

of 451 m and a volume of 607 km
3
, it ranks fourth in water 

content among all the closed lakes of the world [3]. 
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Fig. 1. Location of Lake Van Basin on Turkey   

 

 
 

Fig. 2. Location of Lake Van Basin on Turkey Lake Van, SRTM (90m) of 

basin, and distribution of meteorological stations over basin. 

B. Data 

The precipitation data used in this study were obtained 

from the Turkish State Meteorological Service. The primary 

dependent data source was monthly precipitation measured at 

10 meteorological stations between 1981 and 2010. The 

spatial distribution of stations is not fairly uniform over the 

basin; when looking the overall distribution condensed 

placement can be seen near the Lake (Figure 2). The highest 

monthly precipitation is between 200-280 mm and is 

measured generally at the October, November, March and 

April. As independent data source, an elevation map with 1 

km spatial resolution was used (Figure 2). It was obtained by 

resampling the 3 arc second SRTM (the Shuttle Radar 

Topography Mission) (approximately 90 m spatial resolution) 

to 1 km spatial resolution.  

It is observed in many studies that secondary information 

can often improve the spatial interpolation of environmental 

variables [4], [5], [6], [7].  

 

III. METHODOLOGY 

Monthly precipitation predictions are made on spatio-

temporal framework. Each month is interpolated separately. 

Space-time universal kriging (ST-UK) method is used to 

obtain predictions over the basin. Elevation is used as 

secondary variable. For accuracy assessment R-square and 

RMSE performance measures are used. 

A. Space-time Kriging 

Consider a variable z which varies in the spatial (s) and 

time (t) domain. Let z be observed at n space-time points (si, 

ti), i=1, ..., n. These measurements constitute a space-time 

network of observations. However it is practically impossible 

to measure data point z at each spatial and temporal point. In 

order to obtain a complete space-time coverage, interpolation 

of z is required. The aim of space-time interpolation is to 

predict z(s0, t0) at an unmeasured point (s0, t0), which is a node 

of a space-time grid.  To predict z at these nodes, it is assumed 

to be a realization of a random function Z which has a known 

space-time dependence structure. Next Z(s0, t0) is predicted 

from the observations and using the assumed space-time 

model [1]. 

The random function Z can be defined with a deterministic 

trend m and a zero-mean stochastic residual V as follows (1): 

 

              (1) 

 

The deterministic trend m represents large-scale variations 

whereas the stochastic component V represents small-scale 

variations [1]. 

B. Cross-validation  

Ten-fold cross-validation method was used to evaluate the 
performances of the space-time interpolation technique [8], [9]. 
For this purpose, the total dataset comprising all measurements 
was randomly split in ten (approximately) equally sized sub-
datasets. For each sub-dataset, the remaining 90% of the data 
was used as a training set to calibrate the space-time prediction 
model and make predictions of monthly precipitation at the 
sub-datasets that was set aside, and which comprises the test or 
validation dataset. In this way, predictions at the test dataset 
locations were compared with the observed data for each of ten 
test datasets. Every measurement was used once in test 
datasets. Performance assessment was done by comparing the 
Root Mean Squared Error (RMSE), and R-square. 

IV. RESULTS AND DISCUSSION 

Space-time Universal kriging is performed for each month 

separately. Only the results for the January month are 

represented in this paper (Figures 3). As seen from the Figure, 

prediction maps have less detail and have similar values for 

consecutive time periods. Nevertheless, predictions are 

obtained for each spatial and temporal framework. This 

undesirable situation is resulted because of using few 

observations. In Addition, the meteorological stations do not 

have the complete observations for every month.  

),(),(),( tsVtsmtsZ +=
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Fig. 3. Space-time Universal kriging prediction maps. 

V. CONCLUSIONS 

In this study space-time kriging method was applied to 

predict monthly precipitation of the Lake Van Basin, Turkey. 

Measurements obtained from ten meteorological stations were 

used for 1981-2010 time period. Secondary variable that vary 

in space but are static in time (elevation) was used by the 

space-time Universal kriging method. ST-UK method resulted 

with reasonable prediction values at space; however prediction 

values for each time scale are very similar to each other. Thus 

from this study, it is understood that using limited number of 

observations at space-time kriging gives unsatisfactory results 

with regard to temporal framework.  
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Abstract— Several methods for interpolation of daily values 

of various meteorological elements are compared for the area of 

the Czech Republic. Maps were generated for the period 1961-

2010 using IDW and various kriging methods. Suitable settings 

for air temperature, relative humidity, wind speed, sunshine 

duration and precipitation were found. For the task, ArcView, 

RAP (http://www.striz.info/rap/ ) and R software were linked to 

ProClimDB software (www.climahom.eu) for enabling 

automation of the calculation process. The experiences with the 

data processing are presented. 
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Abstract—Estimation and simulation are two forms of 

geostatistical prediction used to assess spatial distribution of a 

continuous variable (e.g. precipitation) sampled at a finite 

number of locations. They can be considered as two optimization 

problems differing in optimization criteria: estimation means 

minimizing a local error variance and simulation strives to 

reproduce global statistics (variogram and histogram) of a 

variable. This paper compares indicator kriging (IK) to 

sequential indicator simulation (SIS) on the example of mapping 

probabilities of precipitation occurrence on the territory of the 

Republic of Serbia. Indicator means that no statements on spatial 

distribution of the original variable values are made, but rather 

on spatial distribution of probabilities that the original variable 

values exceed (or not) some threshold value. The data of four 

distinctive months (February, June, August and October) in 2009 

were chosen as a basis for the prediction. One of the aims was to 

emphasize the smoothing effect of kriging on stochastic surface 

which illustrates spatial variability of a certain phenomenon. 

Although significant similarities between corresponding kriging 

and averaged simulation maps could be noticed, it is evident that 

in some cases simulation is much more careful when it comes to 

prediction of spatial variability, avoiding statements on the 

existence of the areas of extreme probabilities for something to 

happen. 

Keywords—indicator kriging; sequential indicator simulation; 

precipitation occurrence probabilities 

I.  INTRODUCTION 

Precipitation, as one of the most important climate 
elements, is a typical example of a continuous, spatially 
variable phenomenon which requires for conclusions on its 
spatial distribution to be derived, based on the data sampled at 
various locations. Possible spatial distribution of precipitation 
is thus obtained by applying different geostatistical prediction 
methods. The prediction occurs in two forms, as an estimation 
and as a simulation [1], whereby the estimation gives one map 
as a result and the simulation gives greater number (usually 
about hundred) of maps. The map obtained by using estimation 
is statistically speaking the best linear unbiased estimate 
(BLUE) of the variable spatial distribution, whereas maps 
obtained via simulation illustrate equally probable spatial 
distribution of the observed variable. In that sense, estimation 

and simulation can be considered as two optimization problems 
differing in optimization criteria: estimation means minimizing 
a local error variance and simulation strives to reproduce global 
statistics (variogram and histogram) of a variable [2]. 

The aim of this paper was to assess spatial distribution of 
the probabilities for the occurrence of a certain amount of 
precipitation on the territory of the Republic of Serbia in the 
year 2009. The prediction was done via two different 
geostatistical methods, indicator kriging (IK) and sequential 
indicator simulation (SIS), whose results were afterwards 
compared to each other. Apart from this comparison, the 
obtained results were used for the verification of the current 
knowledge on the spatial distribution of rainfall on the territory 
of the Republic of Serbia. 

II. INDICATOR KRIGING 

Mathematical description of a spatial variation of any 
variable, which is the essence of kriging applications, is 
performed using the sum of the three main components [3]: 

 Z(x) = m(x) + ε'(x) + ε" (1) 

with: 

Z(x) − being a value of a random function, 

m(x) − being a deterministic function that describes the so-
called structural component, i.e. trend, 

ε'(x) − being a stochastic (random) component that is spatially 
correlated and represents the remainder of the structural 
component, also known as a regionalized variable, 

ε" − being a residual error, i.e. spatially uncorrelated noise. 

Based on different approaches to treating some of the 
components of spatial variation of a variable, especially the 
trend, one can distinguish between kriging variants: simple, 
ordinary, universal, regression, indicator kriging, cokriging, 
etc. Unlike the other kriging variants which give an estimated 
value of a variable of interest, i.e. of a spatial attribute at a 
certain location as a result, indicator kriging provides 
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information on the probability that a variable value at a certain 
location exceeds some predefined limiting value, i.e. threshold 
[4]. 

Applying indicator kriging requires for binarization of the 
original data to be done. This means that all the values of the 
observed continuous variable must be transformed to the so-
called indicators. Every original variable value is replaced with 
a value of 1 or 0 depending on whether the observed value is 
below or above defined threshold [5]. Mathematically, this 
nonlinear transformation can be represented by the formula: 

 i(x, zk) = {1, for z(x) ≤ zk} or {0, for z(x) > zk} (2) 

with: 

z(x) − being a measured variable value at the point x, 

zk − being a boundary value, i.e. threshold, 

i(x, zk) − being a transformed variable value (indicator) at the 
point x for the given threshold value zk. 

Bearing in mind that normality compliance anyhow 
disappears with binarization of the data, indicator kriging does 
not require for the original variable values to comply with the 
normal distribution [6]. Indicator kriging is also an especially 
efficient way to limit the effect of extremely big values or 
outliers on the results of prediction due to the fact that variable 
values are assigned the same indicator as other values that are 
above the set threshold regardless of the absolute difference 
[7]. Yet, this limitation of the extremes is at the same time a 
serious shortcoming of the indicator kriging method. Namely, 
since indicator kriging aims at minimizing a local error 
variance, the so-called smoothing of a stochastic surface 
representing variable spatial distribution is done, which 
ultimately leads to losing the information on the original spatial 
variability of a sample used in the prediction. Thus, kriging is 
not a particularly suitable prediction method in situations 
where extreme variable values or significant local variations of 
variable values are present. In those cases, simulation is 
preferably used. 

Although it was originally used for mapping mineral 
resources, today more and more possible (and successful!) 
applications of indicator kriging arise: the application in the 
area of water quality assessment [8], precipitation mapping [6, 
9], drawing conclusions about prevalence of certain diseases 
like schistosomiasis in humans [10], just to mention a few. 

III. SEQUENTIAL INDICATOR SIMULATION 

Geostatistical simulation is a spatial extension of Monte 
Carlo simulation concept, whose goal differs to a significant 
extent from the estimation goal, i.e. from the goal of kriging 
application. The essence of geostatistical simulation is 
reproducing variance of the original data, in one-dimensional 
sense (through histogram), as well as in space (via variogram). 
Generally, all realizations (simulations) differ from one another 
and each individual simulation is worse estimate than that 
obtained by applying the appropriate kriging method. 
Nevertheless, averaging large number of simulations leads to a 

good estimate, ultimately to the one gained from geostatistical 
interpolation, i.e. kriging [11]. 

Besides reproducing histogram and spatial variability of the 
data, simulation can honor the data themselves, i.e. take into 
account concrete variable values which condition gaining some 
(unknown) variable value at a certain location. This type of 
simulation is called conditional simulation. 

The choice of a simulation method largely depends on the 
nature of the variable whose spatial distribution is to be 
simulated, so it can be distinguished between [11]: 

• pixel-based methods (nonparametric, Gaussian and 
fractal methods) and 

• object-based methods (point processes, Boolean 
methods). 

Sequential indicator simulation together with p-field 
simulation is the most frequently used nonparametric 
simulation method. Nonparametric methods are the result of 
the indicator approach in geostatistics, which means using 
indicators for conducting structural analyses suitable for 
describing spatial distribution of some categorical variable or 
continuous variable transformed into categorical one based on 
predefined threshold values [11]. 

Algorithm of sequential indicator simulation consists of the 
following steps [11, 12]: 

1. original variable values are transformed into indicators 
(every original value is replaced with the indicator 
vector containing only digits 1 and 0, which defines 
affiliation of the original value to a certain class), 

2. order by which grid cells (in which indicator variable 
values are to be simulated) will be visited, is defined 
by random choice, 

3. in the first cell, k probabilities that the unknown 
variable value at that location belongs to each of the k 
defined classes are calculated (probabilities are 
conditioned by the set of known indicator variable 
values in the neighborhood of the observed cell), 

4. based on calculated probabilities, conditional 
probability distribution function (cpdf), i.e. conditional 
cumulative distribution function (ccdf) is determined 
for the observed grid cell, 

5. number between 0 and 1 is picked by random choice − 
that number represents probability based on which one, 
by inspecting the corresponding ccdf, determines the 
class the unknown variable value at the observed 
location belongs to; indicator vector for that grid cell is 
then filled by giving the value of 1 to a class the cell 
belongs to and 0 to all the other classes, 

6. simulated indicator vector for the observed location is 
added to the set of known values which condition 
simulation of values in the next grid cell, 

7. steps 3-6 are repeated for all grid cells, whereby the 
cell visiting order was defined in step 2. 
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IV. PRECIPITATION REGIME IN SERBIA AND DATA USED 

The territory of the Republic of Serbia is characterized by 
two precipitation regimes, continental and Mediterranean, 
whereby the greater part of Serbia belongs to the continental 
regime. Continental regime means that the greatest amount of 
precipitation occurs in May and June, while the least occurs in 
February and October. Areas that belong to the Mediterranean 
regime, which is the case with the southwestern part of Serbia, 
experience a rainier period in November, December and 
January and a drier one in August [4, 13]. These facts were the 
reason why February, June, August and October 2009 were 
chosen as time periods of interest for the prediction of 
probabilities for the occurrence of a certain amount of 
precipitation on the territory of the Republic of Serbia. 

Comparison of the results obtained by using two distinctive 
prediction methods, indicator kriging and indicator sequential 
simulation, was done, as well as the verification of the current 
knowledge on the spatial distribution of rainfall throughout 
Serbia. For this purpose, the data from relatively uniformly 
distributed weather stations at the territory of the Republic of 
Serbia were used. Geographic coordinates, elevation and 
cumulative monthly precipitation amount during the 
aforementioned four months of the year 2009 were provided 
for 191 stations in total. Prediction was done for each grid cell, 
whereby the territory of the Republic of Serbia was gridded 
with the resolution of 1 km × 1 km. 

V. METHODOLOGY 

Applying indicator kriging and sequential indicator 
simulation requires binarization of the original variable values. 
For the purpose of the transformation of the original data into 
indicators, median of every dataset (one dataset per month) was 
chosen as a threshold value for a particular case of prediction. 
For example, in the case of cumulative monthly precipitation 
amount in June 2009 at the territory of the Republic of Serbia 
median had a value of 119.5 mm, which means that the value 
of 1 was assigned to every variable value less than (or equal to) 
119.5 mm, while zeros were assigned to the variable values 
exceeding the threshold value. Medians of cumulative monthly 
precipitation amounts for distinctive months in 2009 are given 
in Table I. 

TABLE I.  MEDIANS 

Month February June August October 

Median [mm] 57.8 119.5 43.8 105.0 

The transformed data were used to calculate experimental 
variograms which were afterwards modeled by variograms 
based on different mathematical functions. Unlike the 
variogram model for February 2009 which utilized exponential 
function, variogram models for June, August and October 2009 
were based on using spherical function. The same variogram 
model was used both in SIS and for the estimation by the 
means of IK, and this was the case with all four months. 

Simulation and kriging were implemented through R 
software environment using its packages (particularly gstat, 
rgdal and RSAGA). Sequential indicator simulation was 

completely conducted according to the procedure previously 
described in the paper. The total of 100 realizations of possible 
spatial distribution of precipitation occurrence probabilities 
was created for every distinctive month. When conducting 
simulation, the maximum number of 20 nearest points (i.e. grid 
cells) was used for conditioning prediction of an unknown 
variable value at a certain grid cell. Introducing this restriction 
was inevitable since otherwise simulation would last for a very 
long time period (if it could be completed at all) because of 
taking into account all known variable values at a particular 
moment. 

Fig. 1 depicts four characteristic realizations (25
th
, 50

th
, 75

th
 

and 100
th
) obtained during applying SIS on the data of June 

2009. All realizations, of course, consist only of grid cells with 
values of either 1 or 0, meaning that the precipitation amount is 
either within previously defined limits or not. The most 
probable spatial distribution of probabilities for the occurrence 
of a precipitation amount that does not exceed the chosen 
threshold value was obtained by simply averaging all of the 
realizations, i.e. simulations for a particular month. 

For every month, the averaged map obtained through 
sequential indicator simulation was compared to the 
corresponding map created by utilizing the indicator kriging 
algorithm. Again, functions implemented in R packages were 
used for performing the necessary calculations. The total of 
four IK maps was created, one for every observed month. It is 
important to notice that, because of some prediction errors, the 
occurrence of probabilities outside the range of [0,1], which 
seems impossible to common sense, is rather usual. These 
probabilities have to be corrected, i.e. all probabilities greater 
than 1 (100%) have to be replaced with the value of 1 and all 
negative probabilities have to be replaced with the value of 0. 
This was done for all obtained “problematic” variable values 
and the final IK maps were immediately afterwards created. 

VI. RESULTS AND DISCUSSION 

Maps given in Fig. 1 substantiate claims that every 
simulation results in different predicted variable values. The 
most evident difference can be seen when comparing Fig. 1a) 
to Fig. 1d), i.e. 25

th
 to 100

th
 realization. Nevertheless, all maps 

given in Fig. 1, although binarized, look very much like the 
averaged map of all realizations given in Fig. 2b) (map on the 
right). The similarity is most obvious in the area of western 
Serbia, where white color prevails in all of the shown 
realizations and the lightest grey in the averaged map, which 
points to the small possibility that precipitation amount in that 
area does not exceed the chosen threshold value. 

Fig. 2 shows final maps of probabilities for the occurrence 
of a certain amount of precipitation on the territory of the 
Republic of Serbia in February, June, August and October 
2009. The maps on the left are the result of applying indicator 
kriging method during prediction, while the maps on the right 
are the averaged maps obtained from sequential indicator 
simulation. In every map, dark-grey color corresponds to the 
interval [0.8,1], i.e. [80%,100%] and suggests that there is a 
great possibility that the monthly precipitation amount at an 
observed location does not exceed the threshold value. On the 
other hand, white color that corresponds to the interval [0,0.2]
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Fig. 1. Characteristic realizations of SIS for June 2009: a) 25th, b) 50th, c) 75th and d) 100th realization. 

points to the fact that it is pretty unlikely the precipitation 
amount is within given limits, in other words, it suggests that 
there is a huge possibility that the precipitation amount at an 
observed location exceeds the threshold value [4]. 

By comparing every IK map to its corresponding SIS map, 
the basic difference between estimation and simulation 
reflecting in smoothing of the variations, can be seen. While 
the maps of the best linear unbiased estimates feature only a 
few probability zones (see Fig. 2, maps on the left, especially 
Fig. 2b) and Fig. 2c)) based on which probability maps in 
vector form could be derived, that is not the case with the maps 
obtained in simulation process (Fig. 2, maps on the right). SIS 
maps generally depict more pronounced variations and 

although several areas of different probability ranges could be 
distinguished, points from other ranges stay in those areas. This 
implies that creating a probability distribution map based on 
the simulated values in vector form would not be of a great use 
since it would be pretty unreadable because of a huge number 
of polygons or simply many pieces of information would be 
lost because of generalization, which would ultimately lead to 
gaining a map similar to IK map (map with smoothed 
variations). By comparing maps for February 2009 (Fig. 2a)), it 
could be noticed that the SIS map looks very much like the 
corresponding IK map, more than in case of other months. But, 
although in this case creating a vector map based on the results 
of SIS seems to be achievable, variations on the SIS map are 
still considerably less smoothed than those on the IK map, 
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which, in the case of the aforementioned creation of a vector 
map, would ultimately lead to polygons with very rough edges. 

Despite the obvious differences between corresponding IK 
and SIS maps dealing with smoothing of the stochastic surface 
of the variations, the aforementioned maps undoubtedly point 
to a very similar distribution of the probabilities for the 
occurrence of a certain amount of precipitation on the territory 
of the Republic of Serbia. Moreover, the obtained maps given 
in Fig. 2 verify current knowledge on the spatial distribution of 
rainfall throughout Serbia. Northern parts of Serbia, the 
Morava valley and the territory of Metohija are the regions 
with relatively low precipitation amounts [14], which is 
confirmed by dark colors that those regions feature in all of the 
maps given in Fig. 2 (especially IK maps for June and 
October). The rainiest regions of Serbia are located in the west 
which is again obvious from all of the maps since these areas 

are colored in white or light-grey. Considerably higher 
precipitation amounts in the western part of the country are 
caused by a cold front and showers brought by cold air masses 
coming from the Atlantic and western Europe [15]. It is the 
reason why the western parts of the country receive more 
precipitation than the eastern ones, although they are located at 
the same latitude. 

An important thing to notice is that, in some cases, the 
prediction based on simulation is not that exclusive as the one 
based on estimation, in the sense that, in the SIS maps, areas 
with probabilities in the ranges of [0.2,0.4], [0.4,0.6] and 
[0.6,0.8] prevail, with only a few points with the probability in 
the range of [0,0.2] (western and central Serbia) or [0.8,1] 
(northern Serbia). This could most obviously be seen in Fig. 
2b) and 2c) (maps on the right). Again, the exception is the 
map shown in Fig. 2a) (map on the right), i.e. the SIS map for 
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Fig. 2. Results of IK (left) and SIS (right) for: a) February, b) June, c) August and d) October 2009. 

February 2009, but this disagreement with the previous 
statements probably appear due to the nature of the data. The 
fact that the areas with extreme probabilities (whether big or 
small) occur only sporadically in resulting maps, suggests that 
the prediction obtained through simulation is much more 
moderate regarding the values it gives as a result, than the one 
obtained using indicator kriging. 

VII. CONCLUSION 

Climate variables, among which precipitation as well, vary 
in space and time. Those irregular variations cannot be 
adequately described by simple mathematical functions, 
therefore more complex methods, including geostatistical 

prediction, are required. Geostatistical prediction of unknown 
variable values can be done through estimation or simulation. 
The main difference between these two ways of prediction lies 
in the fact that by using estimation only one and that is the best 
linear unbiased estimate of spatial distribution of an observed 
variable is obtained, while simulation means generating several 
different distributions that are equally probable. Obtaining the 
best estimate requires smoothing of stochastic surface of the 
variations to be done. This is not the case with simulation, 
because, unlike estimation, it reproduces the variability of an 
observed variable visible from the available sample (histogram 
and variogram). Simulation gives a great number of the so-
called realizations, out of which the map of the most probable 
spatial distribution of an observed variable is derived by simple 
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averaging. The final map depicts local variations as well, which 
usually stay overlooked in the case of estimation. 

Within this paper prediction of probabilities for the 
occurrence of a certain amount of precipitation on the territory 
of the Republic of Serbia was done by using two prediction 
methods: indicator kriging and sequential indicator simulation. 
Prediction was done for February, June, August and October 
2009 and, since the original data were given in the form of 
cumulative monthly precipitation amounts at different locations 
throughout Serbia, transformation of the data into indicators 
had to be done. Medians of the available datasets were chosen 
as respective threshold values. 

All the maps given in Fig. 2, although obtained by using 
different prediction methods and thus differing in the degree of 
smoothing of stochastic surface of the variations, have 
something in common. They all correspond to the well-known 
spatial distribution of precipitation in Serbia, thereby 
identifying the northern parts of the country, the Morava valley 
and Metohija as regions in which the occurrence of a smaller 
precipitation amount (the amount within the limits of the 
defined threshold) is more likely to happen. The western parts 
of Serbia were confirmed to feature greater probabilities of 
abundant precipitation occurrence, i.e. precipitation which by 
amount exceeds the limits defined when conducting 
geostatistical prediction. 
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Abstract— Uncertainty of results is often as important as 
results themselves for any type of prediction.  This is especially 
true for methods of prediction that contain epistemic uncertainty, 
which often takes the form of specification of parameters for the 
prediction method. These parameters are usually determined by 
an expert knowledge and perceived as granted, however, their 
selection is often a matter of opinion and several different 
solutions are possible.  Each of such solutions can provide 
different prediction. Fuzzy prediction models can be used to 
handle epistemic uncertainty in models and they provide results 
in the form of uncertain prediction, which can be used to obtain 
most likely prediction along with minimal and maximal values of 
prediction. We decided to apply and test the usability of the fuzzy 
prediction model, which was developed and described by Loquin 
and Dubois in Kriging with Ill-Known Variogram and Data 
(2010). 

In this article we study the influence of epistemic uncertainty 
of variogram parameters (sill, range, and nugget) selection on 
results of spatial interpolation of two datasets.  Particularly, the 
well-known and well described meuse data set  is used as one of 
data sources, while the second data set is the collection of mean 
atmospheric pollution measurements (PM10) in the Czech 
Republic in 2013.  Three possible variograms are selected for 
each dataset. Modal variogram is constructed as the most likely 
optimal variogram, while minimal and maximal variograms 
provide bounds for possible realizations of variograms. The fuzzy 
surface construction is based on optimisation scheme given by 
Loquin and Dubois (2010) [8]. The fuzzy surface is than 
compared against surfaces with simulated parameters from the 
range specified by minimal and maximal variograms in order to 
determine its usefulness as boundaries of uncertainty caused by 
user’s selection of variogram parameters. These predictions are 
further studied. Although the validity of the presented 
optimisation scheme is not fully proved, the usability and analysis 
of errors still show only up to 6% of acceptable errors out of 5 
000 simulations. That proves the suitability of the procedure for 
the spatial prediction based on kriging with uncertain variogram. 

Keywords—fuzzy surface, variogram, uncertainty, spatial 
prediction 

I.  INTRODUCTION 

Every system under study contains two types of 
uncertainty. Aleatory uncertainty has its origins in inherent 
randomness of the system, while epistemic uncertainty is a 
result of lack of knowledge [5]. Epistemic uncertainty is often 

met in the form of fixed values of parameters of the model that 
actually are not exactly known. Values of such parameters 
quite often depend partially on the data, and partially on expert 
knowledge. Whenever expert knowledge is used, it is possible 
that more than one solution exists and through that fact an 
epistemic uncertainty is introduced to the model [9]. 
Probabilistic representations of uncertainty are quite often used 
for handling the epistemic uncertainty. Even though this 
approach is successful, it has been criticized for requiring too 
detailed knowledge about uncertainty [4]. However, such 
knowledge is usually not available to the user, so alternative 
representations of the uncertainty would be more suitable for 
use [11,5]. The alternative theories for epistemic uncertainty 
representation are evidence theory, possibility theory and fuzzy 
set theory [4]. 

The problematic of epistemic uncertainty affects all models 
used for predictions, and spatial prediction methods are no 
exception to that fact. Every method used for spatial 
interpolation has a set of parameters that are adjusted and based 
on expert knowledge of the data. Very often, the influence of 
these parameters on spatial prediction is not discussed and the 
prediction based on exact values of the parameters is 
considered as certain. However, the selection of these 
parameters can affect the result quite significantly [9,1].  

In this paper we study the approach to handle the epistemic 
uncertainty in the kriging interpolation method presented in [8]. 
The authors provided method that leads to creation of fuzzy 
surface because such surface does incorporate the uncertainty 
of the interpolation parameters. The method for creating the 
surface is potentially computationally very demanding. An 
optimisation scheme, that overcome this problem was proposed 
by the authors [8] as well, but this optimisation algorithm has 
not been studied and verified so far. In this research we tested 
two datasets to create fuzzy surface using the optimisation 
algorithm and perform experiments to verify whether it 
provides bounds of the solutions that would be obtained 
without the optimisation. 

II. FUZZY NUMBERS 

Fuzzy numbers are special cases of fuzzy sets that represent 
vague, imprecise or ill-known values [3,7]. Like a fuzzy set a 
fuzzy number is defined by a membership function, which 
specifies membership degree for each element � from the 
universe	�. The membership function of fuzzy number �� is 
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usually denoted as ���(�). Fuzzy number has to be a normal 
convex fuzzy set, with at least piecewise continuous 
membership function that is defined on the universe of real 
numbers [3,7]. Fuzzy numbers are proven to be well suited for 
calculation with imprecise values in situation when uncertainty 
of the value is not result of variability [3,7,11]. Fuzzy number 
than forms bounds around uncertain value and allows further 
processing of such vague value by means of fuzzy arithmetic. 

Triangular fuzzy numbers (TNF) are of special interest for 
the purpose of this research because of three main reasons; (1)  
TNF is simple models of uncertain numbers, (2) TNF is  
specified by three values [�
�,�����,���] and (3) TNF has 
linear membership function between these values: 

���(�) = 	� 0	if	� < �
�	or	� > ����� !" #$%&� !" 	if	�
� ≤ � ≤ �����()*��()*�	 #$%& 	if	����� < �	 ≤ ���  (1) 

The TNF is completely defined by these three values [3]. +���� value specifies the most likely value of the uncertain 
number while �
� and ��� forms bounds for possible 
realizations of the uncertain value. This can also be called 
range of fuzzy number.  

 
Fig. 1. Example of a fuzzy number represntin uncertain value, that can be 
described as approximatelly 2. 

III.  FUZZY SURFACE 

Classic surface is a surface, where for each coordinate pair �, , exists one value of - that is associated with this location. 
The value of - specifies the height of the surface at the given 
location. On fuzzy surface, each location �, , has associated 
with fuzzy number .�, that represents possible set of values that 
the surface can take at the given location [2]. Such model 
naturally contains uncertainty of the surface (Fig. 2). 

There are two main approaches to the creation of fuzzy 
surfaces. The first method starts with uncertain data (specified 
as fuzzy numbers) and extends the interpolation process by 
using extension principle [2]. Alternative approach uses crisp 
data, which are much more common, and specifies parameters 
for interpolation as fuzzy numbers, which leads to result being 
also fuzzy number [1,8].  

IV. METHOD OF FUZZY SURFACE CREATION 

The process of the creation of fuzzy surfaces based on the 
kriging with uncertain variogram was originaly presented in [1] 
and lately improved by [8,10]. The approach is based on the 
premise that the selection of variogram parameters  (nugget, 
sill and range) depends mainly on the expert’s opinion and 

therefore there exist several possible solutions. In such 
situation, each of those parameters can be specified by the 
expert as a fuzzy number with specific �
�,����� and ��� 
values. This is especially useful in situations when the shape of 
the experimental variogram is ambiguous and it is difficult to 
fit the theoretical variogram [1]. According to [8] there is a 
little difference between manual and automated fitting of 
variograms. In each case the uncertainty is present in the 
selection of parameters. This is one point where the epistemic 
uncertainty is present in the spatial prediction done by kriging.  

 

 
Fig. 2. Example of a fuzzy surface 

Loquin and Dubois [8] also point out another issue that is 
completeness of the data set that is used to construct the 
variogram. Since this dataset is only “representative” sample of 
the complete dataset, it is quite possible that it is incomplete 
and it is definitely ill-known. So it is reasonable to consider the 
variogram as an uncertain representation of the reality that is 
most likely not complete and most likely missing some part of 
information. 

  Based on mentioned premises, the method for the 
calculation of kriging with fuzzy variograms was proposed 
[1,8]. The variogram is considered as fuzzy (Fig. 3) because of 
its parameters (sill, range and nugget) are specified as 
triangular fuzzy numbers. The calculation with fuzzy numbers 
is done by means of fuzzy arithmetic [3,7] that is based on the 
extension principle[15]. However, as noted by several authors 
[3], the direct use of extension principle is very complicated 
and computationally very demanding. This is especially true in 
the case of the kriging calculation, which is computationally 
expensive on its own. Because of these facts, it is useful to 
have optimisation scheme that would simplify the calculation. 
Such optimisation practices exist for fuzzy arithmetic [3]. 

 Three predictions at each location �, , need to be 
calculated to obtain fuzzy surface. +���� value of the TNF is 
easy to obtain as it can be obtained directly from the modal 
variogram. But calculation of �
� and ��� values is more 
problematic since their calculation requires solving of a global 
optimisation problem [8]. The optimisation scheme for kriging 
with fuzzy variogram that allows avoidance of this 
computationally complicated task was proposed in [8].   

A. The Optimisation Scheme 

Suppose that there are values of sill, range a nugget 
specified as fuzzy numbers. So there are three variables that 
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have modal, minimal and maximal value. The objective of 
fuzzy kriging is to calculate .� at each location. +���� value is 
obtained directly by calculating kriging with ����� values of 
sill, range and nugget. +
� and ��� values of .� should be 
obtained from all possible combinations of sill, range and 
nugget over their ranges [8]. However this step is rather 
complicated and problematic, as it requires solving of global 
optimization problem, so preliminary optimization, that 
provides estimates of the �
� and ��� values, can be done 
[8]. According to the authors [8] it has been empirically 
observed that the bounds of the prediction .� are formed for 
extreme combinations of kriging parameters. That means that 
practically only 20 calculations of kriging need to be done, 
which lowers the computational load significantly. Minimum 
and maximum from these calculations are quite likely to be 
practical bounds of .�, however this fact is only based empirical 
observation and is not universally valid [8].    

V. CASE STUDIES 

The case studies are designed to verify the practical 
usefulness of the optimisation scheme presented in [8]. The 
experiment consists of a creation of fuzzy surface based on 
uncertain variograms and the optimisation scheme. Then this 
fuzzy surface is compared with results of probabilistic 
metaheuristic method: simulated annealing [8], in order to find 
out if some combination of kriging parameters provides 
estimates outside of range of the fuzzy surface. The question to 
be verified is the reliability of the optimisation scheme result. 

VI. CASE STUDIES: DATA  

In this contribution, the influence of epistemic uncertainty 
of variogram parameters selection on results of spatial 
interpolation in two datasets was studied.  Firstly, the well-
known and well described meuse dataset that is freely available 
e.g. together with R package gstat [12] was used. The 
concentration of zinc in the soil (or its logarithm to be more 
precise) was selected as studied characteristic. Secondly, we 
decided to use the collection of mean atmospheric pollution 
measurements (coarse particles - PM10) in the Czech Republic 
in 2013. This dataset was collected by the network of 
measuring stations owned and managed by Czech 
Hydrometeorological Institute1. Data are published in the form 
of linked html tables2 that are possible to parse using suitable R 
packages (e.g. RCurl [13], XML [14], etc.). Original dataset 
contains records from 113 measuring stations. Unfortunately, 
only 86 of them were suitable for further computations due to 
their completeness. 

VII.  VARIOGRAMS 

Variogram (or semivariogram) is usually a crucial part of 
geostatistical analysis. The variogram plots semivariance as a 
function of distance and therefore, it describes how similarity 
(spatial autocorrelation or spatial dependence) decreases with 
the distance. Its main characteristics, except the type of fitted 
model, are nugget, sill and range. Nugget parameter describes 
measurement errors or variance in lower scales; sill is the total 

                                                           
1 Map of the stations network is available at http://goo.gl/59aEIV 

2 Updated tabular data reports from measuring stations for year 2013 are 
available at http://goo.gl/WjQcL9 

nonspatial variance of the data set and (practical) range is a 
distance at which the semivariance is close to 95% of the sill 
[6]. They are usually set as initial parameters during the fitting 
of the theoretical model of variogram that comply with the 
experimental variogram.  An experimental variogram is a plot 
showing how one half the squared differences between the 
sampled values (semivariance) changes with the distance 
between the point-pairs. It is usually expected to see smaller 
semivariances at shorter distances and then a stable 
semivariance (equal to the global variance) at longer distances 
[6]. 

TABLE I.  PARAMETERS OF FITTED THEORETICAL VARIOGRAM MODELS 

 Meuse PM10 
Min Mod Max Min Mod Max 

Fitted Model Sph Sph Sph Gau Gau Gau 
Nugget 0.00 0.06 0.15 50 53 55 
Partial sill 0.50 0.55 0.60 90 114 130 
Range 800 900 1 000 0.20 0.24 0.50 

 

 
Fig. 3. Triplets of variograms of meuse data (top) and PM10 particles in the 
Czech Republic in 2013 (bottom). Minimal variograms represents a bottom 
boundary (red line), modal variograms (green line) is the optimal option and 
maximal variogram (blue line) bounds upper values 

Three possible variograms are selected for each dataset in 
order to create fuzzy surfaces. Modal variogram is constructed 
as the most likely optimal variogram while minimal and 
maximal variograms provide bounds for possible realizations 
of variograms. All triplets of variograms are depicted in Figure 
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3. Particular values of parameters for bot variograms are then 
shown in the Table I. 

VIII.  OPTIMIZATION AND SIMULATIONS  

The fuzzy surface is constructed by following procedure. 
The modal value of the surface is calculated as kriging using 
the selected variogram model with modal values of nugget, sill 
and range. Then krigings for all the combinations of �
� and ��� values of sill, range and nugget are calculated to obtain 
the values of �
� and ��� of .� at prediction locations. From 
these 8	(20) kriging surfaces the minimal and maximal values 
at each prediction location are selected to form the bounds of 
the fuzzy number .�.  

Because the optimization procedure cannot guarantee that 
the resulting fuzzy surface contain all the possible values, it 
should be combined with probabilistic method to verify its 
completeness. Random realization of the surface is generated 
by calculating the kriging using random values of the kriging 
parameters selected from the range specified by their �
� and ��� value. Basically, this is an application of the Monte Carlo 
method. 

Subsequently, each randomly generated surface is 
compared to the fuzzy surface whether the - value of the 
random surface lies outside of the interval specified by [�
�,���] of .�. If that statement is true, then the value is 
considered as an “error”. In this case, the error means that the 
value obtained from simulation violates the optimization 
scheme. It points to situations where the optimization scheme 
failed to predict bounds of the .�. However, not every such 
error is significant, as some of them could be smaller than the 
precision of the input data and thus they cannot be considered 
real errors. 

IX. RESULTS 

During the optimization process, we carried out up to 5 000 
simulations of possible variogram realizations for both 
datasets. Thresholds of simulations were given by predefined 
variograms. Each variogram simulation generated certain 
percentage of erroneous realizations that deviated from given 
thresholds. In fact, the amount of deviated realization allows 
the evaluation of method’s usability. The overall statistical 
description of errors is provided in Table II. The distribution of 
errors is then depicted in Figure 4. Both results consist of three 
main parts. Firstly, the overall number (its percentage) of errors 
was evaluated, then systematic errors (given by the scale of the 
analysis) were calculated so the percentage of purely “real 
errors” was analysed, and lastly we computed the ratio of real 
to systematic errors, which describes the number of real errors 
falling on one systematic errors, i.e. the lower is the ratio the 
better is the optimization process. Systematic errors were 
defined as records, which values are under the original 
resolution of primary data (e.g. number of decimal places, scale 
of the data, etc.).  Shapes of distributions of errors belonging to 
used datasets are not very similar. The PM10’s errors 
distribution of probability is highly positively skewed and 
significantly leptokurtic, while the meuse datasets errors are 
slightly negatively skewed and rather platykurtic. The PM10 
dataset also shows generally higher average values of both 
overall and real errors as well as the error ratio. 

 
Fig. 4. Violin plots of erros appeared during the optimization process - PM10 
(left part), meuse (right)   

TABLE II.  DESCRIPTIVE STATISTICS OF ERRORS APPEARED DURING THE 
OPTIMIZATION PROCESS 

a Meuse PM10 
OE (%) RE(%) RRSE OE (%) RE(%) RRSE 

Min 0.13 0.00 0.00 0.02 0.00 0.00 
Max 26.91 20.59 3.64 12.52 10.44 5.41 
Mean 4.69 2.26 0.78 7.78 5.17 2.33 
Median 3.46 1.29 0.67 8.73 5.93 2.41 
Std. deviation 3.90 2.94 0.57 3.15 3.20 1.61 
IQR 2.39 1.48 0.50 4.45 5.80 2.98 
Skewness 2.66 3.07 1.97 -0.81 -0.33 -0.05 
Kurtosis 7.82 10.47 4.95 -0.33 -1.25 -1.31 

a. OE represents overall percentage of errors appeared during the optimization process, RE is the 
percentage of real errors (i.e systematic errors are not included) and RRSE is the ratio of real to 

systematic errors 

In the Fig. 5 the profile of the fuzzy surface is shown. It is 
clearly visible from the profile that the different variograms 
that compose the fuzzy variogram, actually model different 
relations among input data.  

 
Fig. 5. Profile of the fuzzy surface of the PM10 in the Czech Republic. The 
profile is along 49°21´N. Full line shows modal value of the fuzzy surface, 
dotted line shows the minimal value and dashed line shows the maximal 
value. 
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So the fuzzy surface created by method proposed by [1,8] is 
actually containing several relations to its neighbouring points 
in comparison to classic kriging that only contain one specific 
relation between input points. By this way the uncertainty of 
the relationships between points in space is implemented into 
to the surface model. 

Figure 6 is then showing three realizations of the kriging 
interpolation with usage of lower (minimal), upper (maximal) 
and optimal variogram for the PM10 dataset. In fact these three 
krigings represent optimal and bounding surfaces of resulting 
fuzzy surface, which profile is depicted in Fig. 5. 

 
Fig. 6. The ordinary kriging interpolations of PM10 in the Czech Republic in 
2013 based on triplets of variograms, minimal variogram (top), optimal 
(centre) and maximal variogram (bottom) 

X. DISCUSSION AND CONCLUSIONS 

According to the results show in Fig. 4 and Table II the 
optimisation scheme for the creation of a fuzzy surface can be 
viewed as a good instrument that is suitable for initial estimates 
and from our point of view, it should be also sufficient for most 
of other practical applications. Considering the fact that the 
fuzzy surface as created by this approach models user’s 
uncertainty about variogram’s parameters, then the percentage 
of “errors” (Tab. II) can be considered as rather small. The 
amount of calculation time that is saved is also notable. Given 
these facts, the optimisation scheme [8] can be thought as the 
useful tool for creating fuzzy surfaces. So far this approach 
[1,8] is the only one that is able to model epistemic uncertainty 
of the kriging parameters that is semantically valid [5,11]. 

Further research should be focused on using this approach 
for practical studies that would provide surfaces together with 

the uncertainty estimation. The use of such surfaces is crucial 
for decision making, because it allows the uncertainty of the 
surface to be propagated to the subsequent analysis. 
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Abstract— GLM (Generalized Linear Model) is a widely used 

regression technique that represents the generalization of 

standard regression linear models. GLM is a flexible framework 

for modeling and the analysis of the variety of data coming from 

the exponential distribution family, which is often the case in 

experiments related to meteorological processes. In this study, 

GLM is used as a part of the hybrid interpolation technique, 

"Regression Kriging", to estimate the trends in average annual 

precipitation in Serbia for the period 1961 - 1990. R package 

GSIF, primarily designed for the modeling of soil phenomena, 

was used to carry out the whole estimation. In order to evaluate 

the quality of the estimation, besides standard diagnostic 

procedures, results were compared to the results obtained 

through multiple regression and standard regression Kriging. 

Keywords—GLM, Linear models; Regression kriging; 

precipitations. 

I.  INTRODUCTION  

The application of geostatistical methods for the creation of 
precise meteorological maps is still completely unexplored. 
Besides many studies in which the possibility of geostatistical 
methods for climate mapping was investigated, new needs and 
techniques offer new possibilities for searching even better 
ways of creating better maps. Precipitation is a very complex 
phenomenon, with daily appearance depending on many 
external factors. This makes daily precipitation very difficult to 
model. However, on average scale, several external factors, 
like elevation, and the geographical location, are recognized as 
important in the geostatistical modeling of precipitations [1][2]. 
There are two similar studies that may be said to stand out for 
their comprehensive survey of comparison techniques for 
precipitation mapping. Both studies compare the interpolation 
techniques applied to annual and monthly rainfall data, which 
are of particular interest to this paper, and both sets of data are 
collected on relatively low density gauges network. First, the 
older study was done by Goovaerts, P. [3]. He showed that the 
stochastic technique, which takes into account spatial 
correlation (ordinary kriging), yields a more accurate 
prediction in comparison to the more simple deterministic 
techniques, and also in comparison to regression techniques, 
which take into account elevation as an external factor. But, 

none of the compared techniques takes into account both 
spatial correlation and external factors, at the same time. The 
second study, the newer one, is a work by Moral J.F. [4].  He 
also compared three main geostatistical techniques (ordinary 
kriging, simple kriging and universal kriging) with three more 
complex algorithms (collocated cokriging, simple kriging with 
varying local means, and regression kriging). These three 
techniques incorporate external factors in two different ways - 
deterministic (regression kriging) and stochastic (collocated 
cokriging). He showed that more complex methods yield more 
accurate results, but also need a more demanding analysis and 
computation, especially collocated cokriging. In their 
introduction chapters, these two works also give a 
comprehensive review of relevant references.  

Over the last few years, an interest in the spatio-temporal 
climate analysis has increased significantly. For example, 
Hengl et. al. [5] have created a framework for the prediction of 
daily temperatures. They also used regression kriging, but the 
version enriched with temporal components (Spatio-Temporal 
Regression Kriging - STRK). Kilibarda. et.al [6], tested the 
performance of STRK for the prediction of mean, max. and 
min. temperatures on the area of the whole world, in the spatial 
resolution of one kilometer, and daily temporal resolution. The 
principle of STRK is the same, but its implementation requires 
a complex analysis of the spatio-temporal correlation of 
temperatures. The application of spatio-temporal interpolation 
requires the availability of predictor and response variables in 
both spatial and temporal sense, and for the whole area and 
period. 

The increased availability of external (auxiliary) variables 
in raster format, favors regression kriging as the most 
appropriate interpolation technique. Also, there have been 
many studies showing superior performance of Regression 
kriging over other interpolation techniques [7] [4]. However, 
the most interesting advantage of RK is the possibility of the 
implementation of various regression techniques in the 
regression part of RK. All these techniques have the same role 
in RK - to create the trend of spatial phenomena as good as 
possible. 
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In this study, we use Generalized Linear Models (GLM) as 
the regression part of RK to interpolate average annual 
precipitations for the period 1961 -1990. The GLM is a well 
known and recommended regression technique. The conceptual 
framework of GLM allows the analysis and modeling of a wide 
range of phenomena [8]. GLM represents a generalization of 
ordinary linear regression that allows modeling wide range of 
data with error distribution other than normal. The first 
interpretation of GLM was given by Nelder and Wedderburn, 
(1972) [9]. A very detailed explanation of this method, applied 
to spatial data, is given in study by C. A. Gotway and W. W. 
Stroup, (1997) [10]. This exhaustive work covered the analysis 
of the performance of GLM in the analysis of spatially 
correlated treatments, and also in prediction.  

The aim of this work is to explain what benefits the GLM 
brings to Regression Kriging, in order to produce a precise 
precipitation map. We used a simple linear model as the base 
for investigating what kind of consequences may occur in the 
results, if requirements related to a linear model are not exactly 
fulfilled, and how can GLM overcome them. The model 
involves three often used co-variables, DEM (digital elevation 
model) and location, expressed in easting and northing 
coordinates), that are linearly related to the values of 
precipitation observations.  

II. MATERIALS AND METHODS 

A. Motivation 

A common procedure in the statistical modeling of any 
phenomenon starts with examining the distribution of data. 
Due to its linear formulation, the geostatistical techniques from 
the Kriging family give the best results, if the data are normaly 
distributed. However, in reality it is not so often. One approach 
to overcoming this problem is the usage of the regression 
kriging. Regression kriging usually combines multiple linear 
regression with simple kriging on residuals [7]. These residuals 
come from a model which is very strict about assumptions 
related to the linear model theory (normality, linearity, variance 
homogeneity and independency). Venables, B. et.al [11] 
pointed out that variance heterogeneity and non-normality 
could bring increased uncertainty into prediction, for points 
with extreme and unusual positions in the predictor space. For 
this purpose, a wide range of fitted diagnostic procedures has 
been developed [12]. If all assumptions are met, these residuals 
have to play the role of a stationary, spatially correlated and 
approximately normal distributed variable. The violation of 
anyone assumption can cause an unusual distribution of 
residuals, and also to make problems with the interpretation of 
model parameters. In order to overcome this problem, it is 
common to transform the response or the predictor variables. 
But doing this kind of transformation has several drawbacks. 
GLM allows analysis results, in sense of mean parameters, in 
the same scale as the measured response, unlike the 
transformed data, for which is recommended to stay in 
transformed scale [13].  Lane, P.W. (2002), in his work related 
to soil data [14],   showed the main advantages and drawbacks 
of doing transformation.  

GLM enables the modeling of mean by retaining the 
concept of additive explanatory effects, which can be 
expressed on a transformed scale and, at the same time cover a 

wide range of variance behavior by using distribution functions 
from the exponential family. Therefore, GLM is relaxed of 
strict assumptions related to ordinary linear models. But, the 
crucial issue of applying GLM is to choose appropriate error 
distribution and link functions, which defines the relation 
between mean and linear predictors. It assumes having some 
knowledge about the phenomena that is being investigated. The 
purpose of this work is to attempt to explore the performance 
of GLM in determining the trend of average precipitation data 
over a long period, as the base for doing the prediction by the 
means of the regression kriging. GSIF R package allows doing 
the prediction in an automated way, but the structure of the 
output data allows for the analysis of all results, obtained in 
each step. Such an easy way for creating maps through 
Regression kriging with GLM is the main motivation for doing 
this analysis. 

B. Data and study area 

We used the same dataset as in the study done by Bajat 
et.al. 2012. [15] It consists of two different datasets. The first 
one contains the rain gauge stations data (their spatial 
coordinates - northing, easting and altitudes, and associated 
average annual precipitation values as a target variable. The 
second set presents a publicly available digital elevation model 
(DEM) as an auxiliary variable. DEM is derived from reducing 
the ASTER model for the territory of Serbia to the 1km spatial 
resolution.  

Spatial autocorrelation analysis, conducted on the target 
variable, in study [15], reveals significant clustering and spatial 
autocorrelation for the whole pattern of observation points. 
Overlaping of autorcorrelated clusters and topographic units 
also justified the usage of DEM as a covariable.  

C. Regression Kriging and GLM 

Regression Kriging combines two conceptually different 
types of techniques - deterministic regression and stochastic 
kriging technique. If the measured values of the target variable 
are given as Z(si), i=1…n, where si represents spatial location 
and n the number of realized measurements, then the system of 

equations, for estimating values of target variables  )( 0sZ
∧

 is: 
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Deterministic part ( )m s
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 is linear regression model (LM), 

which can be both simple and multiple. The easiest formulation 
of that model is: 
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Regression coefficients kβ
∧

could be obtained through 

different fitting methods, like ordinary least squares (OLS) or 
generalized least squares (GLS). 

Deterministic parts can also be estimated within a GLM 
framework. By comparing it with LM, GLM model can be 
written as: 
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where 
i

γ is any smooth monotonic function, called the 

mean function. Generalized linear models extend linear models 
by allowing non-linearity in the model structure (trough to 
mean function), and much more flexibility in the specification 
of the distribution of the response variable. An important 
feature of the Exponential distribution family is the variance 
function, which is, for some distributions, a function of the 
mean and one more parameter (scale parameter):  

var( ) = ( )i iy V µ φ . The inference of GLM is based on the 

theory of maximum likelihood estimation. The most likely 
values for the parameters are those that cause the likelihood to 
be as large as possible. In the majority of GLM applications, 
the likelihood is maximized by iteratively re-weighted least 
squares (IRLS) algorithm. 

Model diagnostic for GLM is performed by using the 
residuals, in the same way as for linear models [13]. However, 
in the regression kriging framework, the prediction is based on 
response (raw) residuals. In case of the Gaussian family and 
log link function, these two sets of residuals are equal, and 
comparable between a standard linear model (LM) and GLM, 

because var( ) = 1iy .  

In order to make a comparison between these two trend 
models, and to make an inference about the influence of 
violated assumptions in the linear model, several diagnostic 
tools and measures of accuracy were used. Residuals plot with 
spread level [13] plot were used in order to investigate the 
fulfillment assumptions of the linear model. R

2
 (coefficient of 

determination) and RMSE (residual mean squared error) were 
used to compare the global accuracy. The estimated procedure 
for R

2
 in GLM framework is slightly different from that in 

OLS (ordinary least squared) used in the standard linear model, 

but the logic is the same (for GLM R
2
 is based on the relation 

of residual and null deviance:
2 1

0

1
D

R
D

= − ).  

 The effects of the unusual observation are investigated by 
examining hat values and the relation between the hat values 
[13] and the residual differences of the two models.  

D. Software 

All computations are carried out by R software and related 
packages. R is the system for statistical computation and 
graphics, which provides, among other things, programming 
facilities, high-level graphics, interfaces to other languages, 
and debugging facilities [16]. R is free and open source 
software, under the terms of the GNU General Public License. 
R is organized as a collection of packages designated for 
specific tasks.  

All diagnostic methods used for the fitting of linear models 
are implemented in "car" package. With the "car" package, the 
diagnostics of methods, standard linear models and GLM is 
made possible. Analyzing and modeling the data from a spatial 
point of view has been done in several well tested packages for 
spatial analysis: sp, gstat, spatstat, GSIF. 

III. RESULTS AND DISCUSSION 

The linear model created to define the relation between the 
predictors and a response variable is the same in LM and GLM. 
Such a linear model (linear predictor) consists of average 
annual precipitation, as response variables and three predictor 
variables: Easting, Northing and Elevation. These three 
predictors represent a standard and a proven, useful set for the 
modeling of precipitations. According to the right skew of the 
response variable, that simple log transformation is chosen for 
the linear model , which could be useful for making the data 
normal, and also for making the error variance more stable. In 
GLM framework, these data characteristics are used in the 
decision-making about error distribution and link function. Due 
to the nature of the average data and the rightly skewed 
distributions, we are accustomed to using the "Gaussian" 
family and the "log" link function.  

The statistically significant influence of all predictors is 
shown (for all predictors) in each model (table 1).  

In order to examine whether the the requirements related to 
standard linear model assumptions were fulfilled the residual 
plot was created (Figure 1). If all assumptions were met, all 
these graphs should have a pattern with no particular trend. The 
presence of moderate systematic features in these patterns 
indicates the violation of linearity and homoscedasticity 
assumptions. These shortcomings can be fixed by applying 
some of the transformations to the predictors. The aim of this 
study is exactly to examine how these moderate violations of 
requirements affect the estimation, in comparison to GLM.  

The estimates of the coeficient of determination R
2
 and 

RMSE (residual mean squared error) favor GLM as a better 
solution. Small advantage, in the sense of RMSE, goes to 
GLM, but R

2
 seems to be of a significantly different accuracy, 

again in favor of GLM. 
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Table 1 – Summary statistics for two models. (Modified 
output from Stargazer R package [18]) 

Response log(mmperm2) 

OLS 

 (mmperm2) 

glm: gaussian, link = log 

East -4.229e-07***  -5.316e-07*** 

Std. Error -5.86E-08  -5.98E-08 

North -1.645e-07***  -1.204e-07** 

Std. Error -4.88E-08  -4.99E-08 

H 3.077e-04***  3.280e-04*** 

Std. Error -1.13E-05  -8.68E-06 

Constant      7.453***       7.289*** 

Std. Error -0.256  -0.26 

Observations 1,014  1,014 

R2 0.59  0.66 

Adjusted R2 0.591   

RMSE 95.48  94.11 

 

 

Fig. 1. Residual plot of ordinary linear model. 

Spatial distribution of residuals from the two models looks 
very similar. The spatial correlation of residuals could be 
modeled by almost the same variogram (table 2). 

Table 1 – Estimated parameters of fitted variogram models of 
residuals from two model. 

LM residual variogram GLM residual variogram 

model psill range model psill range 

Nug 2,296.90 0 Nug 2,339.90 0 

Exp 8,031.69 68,500.67 Exp 7,993.86 71,535.98 

 

The Residual difference map (Figure 2) reveals interesting 
patterns. This map shows that LM has made larger residuals on 
the points located in the south-west part of Serbia. Considering 

that it is mainly a mountainous area, and also the area of 
extreme observation values, it can be concluded that these two 
models produce the greatest difference in areas with extreme 
values of observations and predictors (Figure 2). To prove this 
statement, a map of hat-values of observations has been 
created. 

 
Fig. 2. Residual difference map 

 

Fig. 3. Map of hat-values of observation for linear model 

Spatial distribution of hat values (Figure 3) coincides with 
the spatial distribution of residual differences. This is also 
confirmed by the coefficient of correlation, which shows a 
moderate positive correlation (r=0.6). The obtained results 
indicate that the observations which are relatively far from the 
center of the predictor space, produce a different influence on 
these two models. 
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Fig. 4. Kriging residuals difference  

Obtained results show that these two models provide 
different input data for Kriging interpolation. Kriging 
interpolation, applied to obtained residuals, with almost the 
same variograms, has almost completely eliminated the 
existing differences between two regression models. On the 
obtained Kriging residuals difference map (Figure 4), no 
systematic pattern can be recognized. Both models gave a very 
high and similar estimation coefficient of determination - R

2
 

( 2 20,86 ; 0,84GLM LMR R= =  obtained from the residuals 

estimated in the process of cross-validation). These results 
imply a very good performance of Regression kriging, used 
independently from the regression methods. The final result, 
expressed in the map of predicted average precipitation, has 
remained resistant to the moderate violation of requirements 
related to standard linear models.   
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There are practical links between flood risk management, 

climate change adaptation and sustainable development leading 

to reduction of flood risk and re-enforcing resilience as a new 

development paradigm. There has been a noticeable change in 

flood management approaches, moving from disaster 

vulnerability to disaster resilience; the latter viewed as a more 

proactive and positive expression of community engagement with 

flood risk management. As flood hazard is increasing, at the same 

time it erodes resilience, therefore climate change has a 

magnifying effect on the flood risk. In the past, standard disaster 

management planning emphasized the documentation of roles, 

responsibilities and procedures. Increasingly, these plans 

consider arrangements for prevention, mitigation, preparedness 

and recovery, as well as response. However, over the last ten 

years substantial progress has been made in establishing the role 

of resilience in sustainable development. Multiple case studies 

around the world reveal links between attributes of resilience and 

the capacity of complex systems to absorb disturbance while still 

being able to maintain a certain level of functioning. Building on 

emergency planning experience, there is a need to focus more on 

action-based resilience planning to strengthen local capacity and 

capability, with greater emphasis on community engagement and 

a better understanding of the diversity, needs, strengths and 

vulnerabilities within communities. Floods do not impact 

everyone in the same way. It is clear that the problems associated 

with sustainable human wellbeing in calls for a paradigm shift. 

Use of resilience as an appropriate matrix for investigation arises 

from the integral consideration of overlap between: (a) physical 

environment (built and natural); (b) social dynamics; (c) 

metabolic flows; and (d) governance networks. This paper 

provides an original systems framework for quantification of 

resilience. The framework is based on the definition of resilience 

as the ability of physical and social systems to absorb disturbance 

while still being able to continue functioning. The disturbance 

depends on spatial and temporal perspectives and direct 

interaction between impacts of disturbance (social, health, 

economic, and other) and adaptive capacity of the system to 

absorb disturbance. 

I. INTRODUCTION 

The terms ‘floods’, ‘flooding’, ‘flood hazard’ and ‘flood risk’ 

cover a very broad range of phenomena [1].  Among many 

definitions of floods that do not incorporate only notions of 

inundation and flood damage for the purpose of this paper I 

will stay with the definition provided by [2] that a flood is a 

body of water which rises to overflow land which is not 

normally submerged. This definition explicitly includes all 

types of surface inundation but flood damage is addressed 

only implicitly in its final three words. Both, inundation and 

damage occur on the great range of scale.  

 
The term such as ‘flood risk’ and ‘flood losses’ are 

essentially our interpretations of the negative economic and 
social consequences of natural events. Human judgment is 
subject to value systems that different groups of people may 
have and therefore these terms may be subject to different 
definitions. The flood risk, at various locations, may increase 
by human activity – like inappropriate land use practices. 
Also, the flood risk may be reduced by flood management 
structures and/or effective emergency planning.  The real 
flood risk therefore, stems from the likelihood that a major 
hazardous event will occur unexpectedly and that it will 
impact negatively on people and their welfare [3]. Flood 
hazards result from a combination of physical exposure and 
human vulnerability to flooding. Physical exposure reflects the 
type of flood event that can occur, and its statistical pattern, at 
a particular location. The human vulnerability reflects key 
socio-economic factors such as the number of people at risk 
on the floodplain, the extent of flood defense works and the 
ability of the population to anticipate and cope with flooding. 
In this paper the formal definition of flood risk is a 
combination of the chance of a particular event, with the 
impact that the event would cause if it occurred. Flood risk 
therefore has two components – the chance (or probability) of 
an event occurring and the impact (or consequence) associated 
with that event. The consequence of an event may be either 
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desirable or undesirable. A convenient single measure of the 
importance of a flood risk is given by: 

                   (1) 

 

If any of the two elements in (1) increases or decreases, 

then risk increases or decreases respectively. 

 

How we manage flood risk? In many countries flood risk 

management is evolving from traditional approaches based on 

design standards to the development of risk-based decision-

making, which involves taking account of a range of loads, 

defense system responses and impacts of flooding [4].  The 

difference between a risk-based approach and other 

approaches to design or decision making, is that it deals with 

outcomes. The World Meteorological Organization is 

promoting the principal of integrated flood management - IFM 

– [5] that has been practiced at many places for decades. An 

Integrated Flood Management plan should address the 

following six key elements: (i) Manage the water cycle as a 

whole; (ii) Integrate land and water management; (iii) Manage 

risk and uncertainty; (iv) Adopt a best mix of strategies; (v) 

Ensure a participatory approach; and (vi) Adopt integrated 

hazard management approaches.  

 

Flood risk management is a part of all social and 

environmental processes aimed at minimizing loss of life, 

injury and/or material damage. [6] and [7],[1] advocate 

systems view of flood risk management processes in order to 

address their complexities, dynamic character and 

interdisciplinary needs of management options. A primary 

emphasis of systems analysis in flood risk management is on 

providing an improved basis for effective decision-making. A 

large number of systems tools, from simulation and 

optimization to multi-objective analysis, are available for 

formulating, analyzing and solving flood risk management 

problems. 

   

In order to apply a continuous improvement approach to 

flood risk management it is essential to have a way or thinking 

– a model – of what is being managed. The system in our 

focus is a social system. It describes the way floods affect 

people. The purpose of describing the system is to help clarify 

the understanding and determine best points of systems 

intervention. 

 

The flood risk management system comprises four linked 

subsystems: individuals, organizations and society, nested 

within the environment. Individuals are the actors that drive 

organizations and society to behave in the way they do. They 

are decision makers in their own right, with a direct role in 

mitigation, preparedness, response and recovery from 

flooding. Organizations are the mechanism people use to 

produce outcomes that individuals cannot produce. 

Organizations are structured to achieve goals. Structure 

defines information and/or resource flows and determines the 

behavior of the organization. The concept of society is 

different from those of individuals and organizations, being 

more difficult to put boundaries around. In general, society 

itself is a system of which individuals and organizations are 

subsets and contains the relationships people have with one 

another, the norms of behavior and the mechanisms that are 

used to regulate behavior. The environment includes concrete 

elements such as water and air, raw materials, natural systems, 

etc. It also encompasses the universe of ideas, including the 

concept of ‘future’. This concept is important in considering 

flood risk management - it is the expectation of future 

damages and future impacts that drives concern for sustainable 

management of flood disasters. Six management principles are 

presented by [1]. 

 

A change to proactive flood risk management requires an 

identification of the risk, the development of strategies to 

reduce that risk, and the creation of policies and programs to 

put these strategies into effect.  Flood risk management is a 

part of all social and environmental processes aimed at 

minimizing loss of life, injury and/or material damage. A 

systems view of flood risk management is recommended in 

order to address the complexity, dynamic character and 

interdisciplinary needs of management options. A primary 

emphasis of systems analysis in flood risk management is on 

providing an improved basis for effective decision-making. A 

large number of systems tools, from simulation and 

optimization to multi-objective analysis, are available for 

formulating, analyzing and solving flood risk management 

problems. The main objective of this book is to present a 

variety of systems tools for flood risk management. 

 

Recognizing the progress in flood risk management and 

recognizing the needs of vulnerable communities, the United 

Nations and its partners at the World Conference on Disaster 

Reduction (WCDR) in Kobe City in January 2005,  came up 

the “Hyogo Framework for Action 2005-2015: Building the 

Resilience of Nations and Communities to Disasters”. This 

was the introduction of resilience thinking as a replacement 

for flood risk management. Governments around the world 

have traditionally planned large-scale, centralized 

infrastructure flood protection systems that aim to control 

variables and reduce uncertainties. There is growing 

awareness that a transition toward sustainable alternatives is 

necessary if systems are to meet society’s future water needs 

in the context of drivers such as climate change and 

variability, demographic changes, environmental degradation, 

and resource scarcity. However, there is minimal 

understanding of how to transition from flood risk 

management to building flood resilience and how to 

operationalize resilience thinking as one component of 

strategic planning for such change to facilitate the transition to 

a sustainable water future [8]. 

II. RESILIENCE QUANTIFICATION FRAMEWORK 

There are many definitions of resilience [9], from general: 

(i) The ability to recover quickly from illness, change or 

misfortune; (ii) Buoyancy; (iii) The property of material to 

assume its original shape after deformation; (iv) Elasticity; to 
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ecology–based [10]: (i) The ability of a system to withstand 

stresses of ‘environmental loading’; to hazard–based [11]: (i) 

Capacity for collective action in response to extreme events; 

(ii) The capacity of a system, community, or society 

potentially exposed to hazards to adapt, by resisting or 

changing, in order to reach and maintain an acceptable level of 

functioning and structure; (iii) The capacity to absorb shocks 

while maintaining function; (iv) The capacity to adapt existing 

resources and skills to new situations and operating 

conditions. The common elements of these definitions include: 

(i) minimization of losses, damages and community 

disruption; (ii) maximization of the ability and capacity to 

adapt and adjust when there are shocks to systems; (iii) 

returning systems to a functioning state as quickly as possible; 

(iv) recognition that resilient systems are dynamic in time and 

space; and (v) acknowledgements that post-shock functioning 

levels may not be the same as pre-shock levels.  

 

Resilience is a dynamic process, but for measurement 

purposes is often viewed as static phenomena [12]. In this 

paper a flood resilient community is a sustainable network of 

physical (constructed and natural) systems and human 

communities (social and institutional) that possess the capacity 

to survive, cope, recover, learn and transform from flood 

events by: (i) reducing failure probabilities; (ii) reducing 

failure consequences (for example material damage); (iii) 

reducing time to recovery; and (iv) creating opportunity for 

development and innovation from adverse impacts. Numerous 

institutions, organizations, and elements in the urban 

environment contribute to community flood resilience, for 

example water and power lifelines, acute-care hospitals, and 

organizations that have the responsibility for emergency 

management.  Improving the resilience of critical lifelines is 

critical for overall community resilience. These organizations 

are essential for community functioning; they enable 

communities to respond, provide for the well-being of their 

residents, and initiate recovery activities when disasters strike 

[13]. For example, since no community can cope adequately 

with a flood disaster without being able to provide emergency 

care for injured victims, hospital functionality is crucial for 

community resilience. Water is another essential lifeline 

service that must be provided to sustain disaster victims.  

 

The quantification framework recommended by [9] 

following [12] has two qualities: inherent (functions well 

during non-flooding periods); and adaptive (flexibility in 

response during flood events) and can be applied to physical 

environment (built and natural), social systems, governance 

network (institutions and organizations), and economic 

systems (metabolic flows).  An original space-time dynamic 

resilience measure (STDRM) of Simonovic and Peck is 

designed to capture the relationships between the main 

components of resilience; one that is theoretically grounded in 

systems approach, open to empirical testing, and one that can 

be applied to address real-world problems in various 

communities.  

 

 
Fig. 1. System performance. 

 

 
 

Fig. 2. System resilience 

 

STDRM is based on two basic concepts: level of system 

performance and adaptive capacity. They together define 

resilience. The level of system performance integrates various 

impacts (i) of flood on a community. The following impacts 

(units of resilience ) can be considered: physical, health, 

economic, social and organizational, but the general measure 

is not limited to them. Measure of system performance 

for each impact (i) is expressed in the impact units 

(physical impact may include for example length [km] of road 

being inundated;  health impact may be measured using an 

integral index like disability adjusted life year (DALY); and so 

on). This approach is based on the notion that an impact, 

, which varies with time and location in space, defines 

a particular resilience component of a community, see Figure 

1 adapted from [9]. The area between the initial performance 

line  and performance line  represents the loss 

of system resilience, and the area under the performance line 

 represent the system resilience ( ). In Figure 

1, t0 denotes the beginning of the flood event, t1 the end, and tr 

the end of the flood recovery period. 

 

In mathematical form the loss of resilience for impacts  

represents the area under the performance graph between the 

beginning of the system disruption event at time  and the 
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end of the disruption recovery process at time . Changes 

in system performance can be represented mathematically as: 

 

          (2)                              

Wh  

 

When performance does not deteriorate due to disruption, 

 the loss of resilience is 0 (i.e. the system 

is in the same state as at the beginning of disruption). When all 

of system performance is lost,  the loss of 

resilience is at the maximum value.  The system resilience, 

 is calculated as follows: 

 

                                         (3) 

 

As illustrated in Figure 1, performance of a system which 

is subject to a flood (disaster event) drops below the initial 

value and time is required to recover the loss of system 

performance.  Disturbance to a system causes a drop in system 

resilience from value of 1 at  to some value at time 

see Figure 2. Recovery usually requires longer time than 

the duration of disturbance. Ideally resilience value should 

return to a value of 1 at the end of the recovery period,   

(dashed line in Figure 2); and the faster the recovery, the 

better. The integral STDRM (over all impacts (i)) is calculated 

using: 

 

                                                  (4)              

Where, M is the total number of impacts. 

 

The calculation of STDRM for each impact  is done at 

each location  by solving the following differential 

equation: 

 

                                                (5) 

 

Where,  represents adaptive capacity with respect to 

impact . 

 

The STDRM integrates resilience types, dimensions and 

properties by solving for each point in space (s): 

 

                                          (6) 

 

The implementation of the presented framework is 

proceeding by using system dynamics simulation approach 

together with spatial analysis software [14], [15] in the form of 

Coastal Megacity Resilience Simulator (CMRS). 

 

III. APPLICATION 

The presented resilience framework is being implemented 

on large cities in low-lying deltaic environments (Vancouver, 

Canada; Manila, Philippines; Lagos, Nigeria; and Bangkok, 

Thailand) selected for consideration under the project "Coastal 

Cities at Risk: Building Adaptive Capacity for Managing 

Climate Change in Coastal Megacities" supported by the 

International Research Initiative on Adaptation to Climate 

Change of the Canadian International Development Research 

Centre [16].  

 

In this paper some basic information is provided for the 

implementation in Vancouver, Canada. Vancouver is a coastal 

megacity and can be considered as a network of three 

interdependent subsystems: (i) the natural subsystem; (ii) the 

socio-economic subsystem; and (iii) the administrative and 

institutional subsystem. Each of the three subsystems is 

characterized by its own elements and is surrounded by its 

own environment. For the purpose of the project, coastal 

megacity resilience is caused by the interaction between 

society and climate change caused hazards (project focus is on 

precipitation, floods and seal level rise).  

 

The five major impacts that are being considered in the 

STDRM include: physical impacts, economic impacts, social 

impacts, health impacts and organizational impacts. They are 

being individually modeled for Vancouver in order to describe 

the local conditions. 

 
The Coastal Megacity Resilience Simulator (CMRS) is 

data intensive. A very detailed description of each of the five 
impacts considered within the tool and detailed temporal and 
spatial scales require serious data support [9]. 
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Agricultural production in semi-arid Mediterranean regions 
is extremely sensitive to impacts of global climate change, 
particularly to possible increase in excessive heat and drought 
events. Assessment of climatic trends needed for development 
of long-term planning strategies in coastal regions with 
complex topography, such as the mid-Adriatic islands, poses a 
problem since these areas are too small to be distinguished by 
the regional climate models. The purpose of this project was to 
test a novel method to obtain fine-scale climatic information 
using the local-scale climate model MUKLIMO_3 developed 
by the German Weather Service (DWD). We performed 
numerical simulations of atmospheric conditions for potential 
days with excessive heat load for three mid-Adriatic islands: 
Brac, Hvar and Korcula. Additionally,idealized simulations 
according to typical local winds relevant for these islands are 
considered. The model uses a grid with a horizontal resolution 
up to 100 m and CORINE land use data and ASTER GDEM 
orography as input. In combination with the so-called “cuboid 
method”, it was possible to calculate climatological indices 
such as mean yearly number of summer days based on 
observational data from the last 30-year climatic period from 
six local meteorological stations. Model results were 

compared to observational values for climatic indices from 
local meteorological stations which gave good agreement of 
more than 84% at most of the stations and even 97.5 % at 
three of them. In order to make a better validation of the 
model which would account gradients of temperature and 
relative humidity of air according to spatial changes due to 
topography and land use, a measurement campaign was 
organised at islands Hvar and Korčula from 7/8/2013 till 
14/8/2013. The validation and improvement of the model's 
results is still in process. Climatological charts of heat load 
during summer period are used to reveal critical areas for 
agriculture and wildland fires. 

 
Keyword; microclimate modelling, semi-arid regions, complex 

topography, land-use, MUKLIMO_3, cuboid method, climate 

indices, mobile measurements, wildland fires. 
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Abstract—Snow load is defined as a product of snow density, 

snow depth and gravitational acceleration. It is an important 

climatic element that is, together with minimum and maximum 

temperatures and wind load, a part of the national annex for the 

application of standards for the design of structures. In 

particular, the characteristic snow load, defined as the maximum 

snow load at the ground for the 50-year return period, has to be 

estimated and a map has to be supplied as a part of national 

annex. The method for the estimation of the characteristic snow 

load at the station locations is presented, followed by the 

geostatistical mapping procedure for estimating this parameter 

for the whole Croatian territory.  

I. INTRODUCTION 

The Croatian Standards Institute publishes standards for 
the design of structures with national annexes. One of these 
contains characteristic snow load, sk defined as the maximum 
snow load values for the 50-year return period. The existing 
standards for structural design from year 2000 have to be 
updated according to the European standard EN 1991-1-
3:2003, Eurocod 1: Actions on structures – Part 1-3: General 
actions – Snow load, with the new sk map in the national 
annex. The details of the mapping procedure of the sk together 
with preparation and description of snow depth, snow density 
and snow load data are presented in this article. Careful 
estimation of the snow load values is important in order to 
avoid both unnecessary construction costs but also the risk of 
structure failure [13, 9].  

Depending on the measuring tool, snow density is 
calculated from snow depth and snow weight or from snow 
water content. Measuring snow density nor snow water 
content is not standard on meteorological stations so it is less 
frequently performed [7, 21, 20]. Reference [21] estimates that 
measuring snow water equivalent takes ~20 times as long as 
measuring depth since it is recommended to repeat the 
procedure few times to ensure the best accuracy. They convert 
large number of snow depth measurement into snow water 
equivalent to be able to access worldwide snow water 
resources. The snow density model they developed used day 
of the year, snow depth and climate classes to predict snow 
density. Simple, but inadequate rule of 1:10 ratio, reflecting an 
assumed snow density of 100 kgm-3, has been used in USA 

and Canada to estimate density. Reference [20] proposed the 
neural networks  algorithm that predicts density based on 
monthly solar radiation, vertical profiles of temperature and 
humidity and external compaction (surface wind speed and 
liquid equivalent precipitation) to forecast the snow dept from 
the quantitative precipitation forecast. Some European 
countries do not even measure the snow depth which makes 
the snow load estimation even more challenging. Is Spain [9], 
they assume that the total precipitation is in the form of snow 
(neglecting the sleet) for the days with mean daily 
temperatures ≤ 0°C. This can be used directly to calculate the 
snow load as a product of precipitation, water density and 
gravitational acceleration, avoiding the snow density problem. 

The work that was intended to produce a common 
scientific basis which can be accepted by all European 
countries involved in the drafting of Eurocodes has been 
published in University of Pisa Report [5]. It revealed that 
each country used their own traditional simplified density 
model, from the most simple single constant values in 
countries with oceanic or Mediterranean climate or flat terrain 
(in kgm-3: Belgium-150, France-150, Greece-125, Ireland-
156.82, Luxembourg-150, Netherlands-100, UK-156.82, 
Denmark-200) through more elaborated regional values in 
Sweden.  

II. THEORY AND DATA 

A. Data 

Most of the precipitation and climatologic stations in 
Croatia measure snow depth with a snow stick, while only 13 
stations from the 1971−2000 period had snow density data. A 
spring balance or a snow sampler is used at eleven stations, 
except in Skrad and Zavižan where the standard Hellmann 
cutter tube is used. With spring balance, the mass and depth of 
snow is measured and density is calculated directly as the 
mass to volume ratio. Using the Hellmann cutter tube seeks 
for additional measurement of the snow water content from 
the melted snow sample.  

Measured snow densities lower than or equal to 30 kgm-3 

as well as higher than and equal to 600 kgm-3 were discarded. 
Since [8] discuss so called “wild snow”, a low density new 
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snow of 40 kgm-3 as unique for some regions, it was proposed 
that density lower than 30 kgm-3 is very likely an outlier for 
our area. Old snow may reach a density of 400−500 kgm-3 
(www.avalanche-center.org/Education), and firn even 600 
kgm-3. Since firn is typical for glaciers that do not exist in 
Croatia the densities equal or larger than 600 kgm-3 has been 
considered as outliers also. This is confirmed also in [21] 
where it is stated that [14] found that the maximum density of 
seasonal snow approaches 600 kgm-3. 

For the size of the Croatian territory of 56 594 km2 the 
representative spatial density of the data would be around 150 
stations [10], to access the map spatial resolution of 1 km, 
which presents a challenge since 118 station measure snow 
depth but only 13 of those measure snow density. Hence, the 
question was how to estimate the snow density also on the rest 
of the 105 stations measuring only snow depth. Preparing the 
first characteristic snow loads for Croatian standards in 2001 
[24] the typical density was determined as the mean value of 
mean and median of all data and mean and median of 20% of 
situations with maximum snow load in every winter.  

B. Snow load estimation  

Snow load is the weight of snow cover on the surface of 
1m2 ( 2.1). 
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where ms[kg] is mass of snow, g[ms-2] is gravitational 
acceleration, A[m2] is surface area, ρs[kgm-3] is snow density 
and hs[m] is snow depth. Using (2.1) the snow load is 
calculated as a product of snow density, snow depth and the 
gravitational acceleration. 

C. The snow density model 

Snow density has been measured on a small number of 
stations and their spatial coverage is not adequate for the 
purpose of mapping snow load because they cover mainly the 
lowland, continental part of Croatia and only a smaller part of 
the mountain area, and there is no information on density on 
the coast. To overcome this and to use additional information 
from the 105 stations with snow depth measurements, the 
snow density models based on snow depths have been built, 
through linear regression of snow density (ρs) on snow depth 
(hs). 

D. Maximum annual snow load estimation 

This series of annual maximum snow loads is the basis for 
the estimation of the annual maximum snow loads for the 50-
year return period sk, by means of the generalized extreme 
value (GEV) theory. These values are referred to as 
characteristic snow loads. Most of the stations had at least 20 
years of available data. During the work on the establishing 
the snow load zones on the map of the United States it is 
confirmed that adding a big snow year to data developed from 
periods of record exceeding 20 years will usually not change 
50-year return values much [2] so that criteria is adopted here 

also. Only eight stations with shorter data series were included 
in the analysis because of their location in data sparse or 
mountain areas, where there are also very few stations. 

E. Mapping – regression kriging 

Finally, the estimated annual maximum snow loads for the 
50-year return period sk at 118 stations constitute the input for 
the geostatistical procedure of mapping this parameter for the 
Croatian territory by the regression kriging (RK) method [16, 
11]. It uses correlation with multiple environmental predictors 
through regression and spatial autocorrelation of the targeted 
values through kriging for estimation of values at the new 
locations. RK has been applied in mapping numerous climatic 
parameters for the territory of Croatia [25], which has been 
explained in detail in [18]. The RK framework typically 
consists of four steps: (1) the deterministic part of the 
variation is modelled using the auxiliary maps; (2) the 
residuals are modelled for spatial autocorrelation (variogram); 
(3) predictions and prediction errors are computed using the 
RK model and (4) the accuracy of the predictions is evaluated 
using cross-validation (CV). The RK is applied to estimate the 
ln(sk) for the whole territory of Croatia and finally, the 
exponential back transformation is used for the estimation of 
the sk field. 

ME and RMSE have also been used for assessing the 
accuracy of the regression kriging through the leave-one-out 
cross-validation (LOOCV) technique as implemented in the 
gstat package [17]. Leave-one-out cross validation visits a data 
point, and predicts the value at that location by leaving out the 
observed value, and proceeds with the next data point. 

Significant predictors for the snow load regression model 
were selected using the stepwise method of the base package 
in R [22, 19]. Regression kriging has been performed in the 
gstat package [17, 15] in the R open-source environment for 
statistical computing and visualization. 

III. RESULTS 

A. Snow depth and snow  density – spatial differences 

The first step in the analysis was the establishment of the 
linear density models based on daily snow depth and density 
data from 13 meteorological stations. Since snow depth and 
density change with altitude and season, the stations have been 
divided into three subsets according to station altitude and the 
regression equations are also built on monthly basis [7]. 
Inference in the snow depth data showed that inland stations 
below 200 m can expect around 20 cm of snow with the 
maximum between 56−79 cm. Stations between the altitudes 
of 300 m (in the intermediate region between the continental 
and the Gorski kotar region) and 600 m (in the Lika region) 
have a mean snow depth of 29 cm, while the maximum may 
be as high as 120 cm. Higher stations in the Gorski kotar 
region (higher than 600 m) have a mean snow depth of 38 cm, 
and a maximum of 160 cm. The highest Croatian 
meteorological station, Zavižan, has on average 93 cm of 
snow. 50% of the snow depths on Zavižan are between 44 and 
130 cm while the maximum is 320 cm.  
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Mean snow density at lower altitude stations is 182.3 kgm-

3, at two higher stations (300−600 m) the average is 195.8 
kgm-3, and in the Gorski kotar region (600−1000 m) the 
average value is 228.6 kgm-3. The highest mean snow density 
value is the one at the Zavižan station (351.5 kgm-3). The 
differences in maximum densities between stations are smaller 
than the differences in mean values, comparing the 
coefficients of variation. For the stations at different altitudes, 
the differences in mean snow densities are less pronounced 
than the differences in mean snow depth, based on the 
coefficients of variation (also discussed in [7]). 

These differences in snow density, and especially in snow 
depth, led to the definition of borders for the three altitude 
ranges: low-altitude stations (0−600 m), higher altitude 
stations (600−1000 m) and the highest Zavižan station on 
Velebit Mountain (1594 m) and the three sets of regression 
equations. 

B. Snow depth and snow  density – temporal differences 

With regard to the annual course of snow densities for the 
lower altitude stations it may be seen that the median is quite 
stable, around 200 kgm-3, with slightly larger densities in 
January, February or March. For the higher altitude stations 
the density shows an increase from the beginning of the winter 
season to maximum density in March. For the Zavižan station 
the increase in density is apparent through the entire winter 
season. This was the motivation for distinguishing the 
regression models in terms of density on a monthly basis as 
well. For some months and altitude ranges no linear regression 
could be found between snow depth and density, so in snow 
load calculations the average density as calculated from the 
data is used. 

The base density increases from the beginning of the 
winter season to the end (March for low and higher altitude 
stations and April for the Zavižan station), which corresponds 
to increased compaction of snow due to settling and ripening 
[7]. Some occasional snowfall may also occur in April at low 
and higher stations and in May on Zavižan, but the density is 
again lower than at the beginning of the winter. Comparing for 
every altitude region the density (for several snow depths) 
with mean temperatures on the monthly bases revealed the 
similarity in increase of the density through the winter season 
with the maximum on the last month that has mean 
temperature below or around 0°C. This maximum density 
around 0°C is typical for the new snow also [8].  

Comparing individual months, base density also increases 
from lower altitude stations to Zavižan. The negative slope of 
the regression curve is the consequence of the large spread of 
snow density for low snow depths, because there are two types 
of snow data in the data set: fresh, not so dense snow, but also 
older, partly melted and denser snow. As denser, probably 
more mature and thin snow prevails in the data set, a slightly 
negative slope coefficient of the regression line results. For the 
Zavižan station, the spread of snow density for low snow 
depths is also large, but since there is also a substantial 
quantity of deep snow with high density, this results in a 
positive slope in regression line. 

The regression models were also tested on a monthly basis 
for a single altitude class to compare them with those for the 
lowest altitude range (alt < 1400 m) in [7]. In that case, the 
regression had a positive slope similar to [7] that seems to be 
typical for the higher altitudes. The negative slope of the 
regression line is discussed in [23] where they confirm based 
on observations on snow density and snow depth that higher 
densities (except for mountainous regions) are usually 
associated with shallow snow covers and extreme wind and 
temperature conditions (i.e. prairies).  

C. Accuracy of the regression models 

The snow density regression models were tested for the 
accuracy of the snow load calculation through the ME and 
RMSE where they proved to be capable of reproducing the 
measured maximum annual snow loads at those 13 stations. 
ME is between -0.1 kNm-2 for lower altitudes and -0.4 kNm-2 
in Zavižan. RMSE is between 1.15 kNm-2 and 0.78 kNm-2.    

D. Characteristic snow loads at meteorological stations 

According to the Final Report I [5] for the stability of 
structures, there is a demand for excluding exceptional snow 
loads from the GEV analysis. Those exceptional snow loads 
have been defined as isolated and very infrequent snowfalls 
where the resulting snow load is significantly greater than the 
loads in the general body of snow load data. Exclusion of 
these exceptional snow loads from the data set of a particular 
station reduces the average annual snow load at the 25 coastal 
stations by 0.2 kNm-2 and by 0.35 kNm-2 at the five 
continental stations with exceptional snow loads. For most of 
the stations, data are close to the Gumbel family of the GEV 
distributions. In coastal areas of Croatia snow is a rather rare 
event and maximum snow load cannot be calculated using 
theoretical distributions; hence, the maximum snow load for a 
50-year return period was estimated as the 98th percentile of 
empirical distribution.  

E. Characteristic snow load map 

From the histogram of the characteristic snow load data, 
the deviation from the normal distribution has been identified. 
For this type of data distribution, the logarithm (ln) 
transformation is the most appropriate [3, 12] for data 
normalisation prior to multiple regression analysis. In 
addition, some authors [9] use the power function to define the 
relationship between snow load and altitude. Taking the 
logarithm of this type of function leads to linear dependence 
of ln(sk) with altitude, which also supports the use of ln 
transformation in this research.  

Several possible combinations of predictors were 
investigated and finally the regression model for ln(sk) was 
selected that explained 75% (adjusted coefficient of 
determination, Ra

2) of the spatial variability of the snow load 
data. The most important predictor was the one mainly 
influenced by the weighted distance from the sea, reflecting 
the large maritime as well as the influence of altitude on the 
values of this climate element on Croatian territory. 

In the second step of the regression kriging framework, the 
exponential variogram model with the parameters C0=0.05 
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(nugget), C1=0.30 (sill) and a=16423 m (range) was fitted to 
the residuals. 

The final step in the mapping process is the calculation of 
the prediction map, that is, the characteristic snow load map  
and the prediction variance map. When predicting the ln 
transformed value, the prediction has to be back transformed 
to get the final prediction, but the prediction variance map 
cannot be back transformed, so it may give us limited 
information on mapping accuracy. The localized kriging based 
on 90 nearest meteorological stations was applied for 
prediction. This number is estimated according to the leave-
one-out cross-validation procedure, as the one for which the 
average residual value is the lowest, and accuracy the highest. 

The map of characteristic snow load is presented with 14 
snow load classes of unequal width, ranging from 0−14 kNm-2 

(Fig. 1). The largest part of Croatian territory can expect a 
snow load between 0.5−1.5 kNm-2 (60% of the area). The 
coastal areas expect a snow load of up to 0.5 kNm-2 (19% of 
the territory). Snow load between 1.5−2.0 kNm-2 is expected 
on 7% of the territory. Only 4% of the territory expects snow 
loads between 2.0−2.5 kNm-2, while snow loads larger than 
2.5 kNm-2 are expected on 9% of Croatian territory. The 
highest snow load values between 12.0−14.0 kNm-2 are 
expected on Velebit Mountain, where the snow load at the 
Zavižan station was measured at 12.0 kNm-2.  

The uncertainty of the prediction [11] is larger at the 
country borders and in data sparse areas according to the 
kriging variance map of the ln(sk) (not shown). 

Mapping accuracy was tested with the ME and RMSEr, 
that is, RMSE normalised by standard deviation of the data. 
As a rule of thumb [11], the prediction is accurate if RMSEr < 
40%. In that case, the model explains more than 85% of 
variability (1-RMSEr2) at the validation points. The ME of the 
applied regression kriging model was 0.02 and RMSEr=0.31, 
which corresponds to a 90% accuracy at the validation points; 
hence this RK model can be considered very accurate for the 
spatial prediction of the characteristic snow load values on the 
territory of Croatia.  

IV. DISCUSSION AND CONCLUSIONS 

The purpose of this study was to supply a characteristic 
snow load map of Croatia as an important national annex for 
the application of standards for the design of structures. The 
work consists of three main steps: building a snow density 
model based on snow depths, estimation of the snow loads and 
characteristic snow loads at station locations and prediction of 
the characteristic snow loads on the regular grid and at 
unvisited locations, that is, producing a map of characteristic 
snow load. In building a snow density model, daily data of 
snow densities and snow depths were available. Snow density 
models were built taking into account three important factors 
affecting snow density: season, snow depth and altitude.  

Snow depth is more important factor for the variability of 
the snow load spatial distribution on Croatian territory, 
compared with the influence of the snow densities and 
measured using the coefficient of variation of those two 
factors between the stations. The regional differences in 

climate conditions affect snow depth spatial distribution, 
whose spatial patterns are similar to the temperature and 
precipitation patterns on the territory of Croatia [18]. As in the 
case of these two climatic variables, the most influential 
climatic factors are the altitude and distance from the coast. 
For example, Zavižan and Gorski kotar are the coldest regions 
with the highest precipitation and consequently with the 
highest snow depths. In the Lika region it is not as cold and 
precipitation is lower, as well as the snow depths, while 
warmer compared to mountains, continental parts of Croatia 
(at lower altitudes) has even less precipitation and snow fall. 
Due to warmer winters, there is snow fall only on rare 
occasions on the Adriatic coast.  

The highest predicted snow load values in the regression 
kriging framework may be considered quite high, and in 
certain other research, [9] the prediction of the snow load at 
altitudes higher than the altitude of the highest station was set 
to the value measured at that station. We decided to retain the 
RK prediction values. 

The characteristic snow load map for Croatia has been 
visually compared with the neighbouring Slovenian map [1]. 
The impression is that the values at the border match and that 
the values at similar altitudes match on the two maps. 
Together with all applied accuracy measures (ME, RMSRr) 
this also inspires confidence that the presented method can 
successfully predict the snow loads at locations where only 
snow depths are measured applying the snow density model 
and, furthermore, that the method can predict snow loads at 
unvisited locations with the RK model. 
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Fig. 1. Map of the characteristic snow load [kNm-2].  
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Abstract—This study examines spatial pattern of relationship 

between annual and seasonal rainfall in Serbia and North 

Atlantic Oscillation in the period 1961-2009. Correlation analysis 

is done to test relationship between parameters while spatial 

analysis involved autocorrelation analysis. Correlation 

coefficients were plotted on Google maps using a plotGoogleMaps 

package. Results showed negative mainly statistically significant 

correlations at annual and winter scale.  

Keywords—rainfall; NAO; correlation; spatail pattern;  

I.  INTRODUCTION  

This paper examines annual and seasonal rainfall variability 
in Serbia and North Atlantic Oscillation (NAO) in the period 
from 1961 until 2009.  

The North Atlantic Oscillation is one of the dominant 

parameters of global climate. The term itself has been 

introduced by Sir Gilbert Walker in 1920. Traditionally has 

been defined as sea level pressure difference between 

subtropical anticyclone over the Azores and Sub polar 

depression over the Iceland. It has considerable impact on 

winter weather conditions in Europe and some parts of North 

American continent. This pressure difference is normal 

condition which becomes more intensive during winter. There 

are positive and negative phase of NAO. During the positive 

phase winters in North Europe are warmer and wetter with less 

precipitation then usually. At the other hand, negative phase is 

followed by colder winters in North Europe and higher 

precipitation amount in Southern Europe. There are two types 

of NAO indices: one given by Rogers (1984) that presents 

pressure difference between Iceland (Akureyri) and Azores 

(Ponta Delgada) and second one introduced by Hurrell (1995), 

describing pressure difference between Iceland 

(Stykkisholmur) and Portugal (Lisbon). Portis et al. (2001) 

have introduced “mobile” NAO index that change in space 

depending on season. It shows higher correlations with the 

intensity of western winds over the mid-latitudes in North 

Atlantic, then traditional NAO indices.  

Still, there is no unique scientific agreement about the 

mechanism of the NAO origin. What is proved is that it is 

atmospheric phenomenon which is the result of the ocean-

atmosphere interaction. Possible explanations are very wide 

from natural causes to atnthropogenic.  

The impact of NAO can be seen at different levels weekly, 

monthly and decadal. Sometimes weekly and monthly 

oscillations could be caused by polar stratospheric circulation 

(Baldwin, Dunkerton 2001). Decadal and annual NAO changes 

could also be determined by anomalies of ocean surface 

temperature and could have significant impact on temperature 

and precipitation in Europe (Hurrell, 1995).  

Hurrell и Van Loon (1997) have got that NAO in its 

extreme phase, after 1980 had impact on surface warming over 

Europe during winter as well as temperature decrease over the 

North West Atlantic. The impact on precipitation can be seen 

in dry weather conditions in Southern Europe and in 
Mediterranean region and wet in North Europe and 

Scandinavia. The authors also noticed that NAO can influence 

the storm tracks, moving it towards the north. They highlighted 

that NAO should be investigated in the upper parts of the 

troposphere in order to find out regional pattern of the changes 

caused by NAO.  

Ducić et al. (2007) have investigated connection between 

ENSO and NAO indices and rainfall in Serbia in the period 

from 1951 until 2000. Trend analysis for decadal values has 

shown statistically significant result for two stations out of 20. 

With the application of cluster analysis all stations are grouped 

into three clusters. For each cluster has been calculated 

correlation coefficient with ENSO and NAO indices. Some 

stations have shown statistical significance. Such high R value 

could be possible explained by indirect mechanism of ENSO 

impact on NAO index (Harrison and Larkin, 1998).  

On the base of the results given by Pohlmann и Latif 

(2005) it has been presumed that the impact of the Atlantic on 

precipitation in Serbia is more intensive during summer while 

precipitation in winter is influenced by Atlantic and Indo-

Pacific. NAO impact can be determined in stations with 

continental regime, while ENSO impact could be determined in 

those with Mediterranean one (Ducić et al. 2007).  
The aim of this study is to examine relationship between 

NAO and annual and seasonal rainfall in Serbia in the period 
from 1961 to 2009. 

II. DATA SETS AND METHODOLOGY 

A. Data sets 

In this paper, the data were collected from 63 

meteorological stations provided by the Hydro-Meteorological 

Service of Serbia. The data is compiled from 29 synoptical 

stations and 34 climatological stations. The weather station 

network is spatially distributed quite well. However, it should 
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be indicated that station networks in mountainous areas are 

sparse and of uneven distribution due to the lack of 

measurements in these areas. The data, compiled from the 

period between 1961 and 2009, is quality controlled in terms 

of correction of misprints, relocation history and missing 

values (WMO 2002). In order to ensure data quality 63 

weather stations are with complete series. Annual and seasonal 

rainfall data were calculated for each station and seasons were 

considered as following: spring (March–May), summer (June–

August), autumn (September–November), and winter 

(December–February). 

As a parameter of North Atlantic Oscillation NAO index
1
, 

defined as a air pressure difference between Iceland and 

Azores, has been used at annual and seasonal scale.  

B. Methodology 

After visual inspection the precipitation time series were 

subject to analysis correlation determination, followed by a 

standard procedure of hypothesis testing in order to assess the 

statistical significance of the results. 

Furthermore, depending on the data distribution, either the 

parametric or nonparametric method may be used for 

correlation detection. In general, nonparametric methods 

perform better relative to their parametric counterparts for 

abnormal distributions. Due to the fact that a preliminary 

analysis has shown the presence of a skewed distribution in 

some of our precipitation time series, the nonparametric 

method of the Kendall’s tau test  

The global autocorrelation index Moran’s I (O’Sullivan 

and Unwin 2003) and local autocorrelation index like Getis-

Ord Gi* statistics (Getis and Ord 1992) were used for 

detecting spatial patterns in the distribution of meteorological 

stations by considering both their locations and associated 

correaltion values. The calculated spatial autocorrelation 

indices measure and test how observed locations are clustered 

/dispersed in space with respect to their attribute values. 

Getis-Ord Gi* statistics is used to detect possible non-

stationarity of the data; i.e. clustering patterns in specific sub-

regions. In addition, Hot Spot Analysis (Lee and Wong, 2005) 

incorporating Getis-Ord Gi* statistics was used to provide 

more insight into how the locations with high and low levels 

of estimated correlations are clustered. 

We used a recently developed software package called 

plotGoogleMaps
2
 to get better insight in the spatial 

distribution of calculated correlation coeficents in Serbia. The 

software integrates Asynchronous JavaScript, XML (AJAX), 

and the Google Maps Application Programming Interface 

(API) service to produce HyperText Markup Language 

(HTML) file map mashups (web maps) that maintain high-

resolution Google Map images as background data. The tool 

plotGoogleMaps is developed in the open source R software 

language (R-project, 2011), and is designed to automatically 

create web maps by combining the users’ data and Google 

Maps layers (Kilibarda and Bajat 2012).  

                                                           
1
 http://www.cdc.noaa.govn/Pressure/Timeseries/nao.long.data. 

2 http://cran.r-project.org/web/packages/plotGoogleMaps/index.html 

The plotGoogleMaps software offers many advantages when 

compared to other classical graphic device environments. The 

high quality of the background Google layers make better 

abstractions of geographical reality and allow the user to 

explore data spatially with a variety of interactive controls 

(navigation control, pan, zoom, attribute info windows, etc). 

This package promotes the creation of interactive maps in user 

friendly environments where the map is stored in the HTML 

format.  

III. RESULTS  

Results of the analysis have shown generally negative 

correlations between rainfall and NAO index both on annual 

and seasonal level (Fig. 1 and 2). Annually 17 stations showed 

statistically significant correlation coefficients, mostly located 

in eastern parts of Serbia. Results obtained for winter season 

showed statistically significant correlations at 55 stations, 

evenly distributed over Serbia. For other seasons significant 

correlations are not calculated that is why maps for are not 

produced. 

 
 

Fig. 1.Spatial pattern of correlation coefficients between annual rainfall and 

NAO (1961-2009). Stations showing significant correlations are marked with 

X. 

Hurrell and Van Loon (1997) found NAO having impacts 

on drier winter conditions over southern Europe and 

Mediterranean area and wetter over northern Europe and 

Scandinavia. Authors suggested that NAO may influence path 

of the storms, moving them towards the north. They also 

suggested that this should be particularly studied in upper 

layers of troposphere in order to recognize regional pattern of 

changes caused by NAO.  
TABLE I. Moran’s I autocorrelation statistics and Z value in Serbia. 

Moran I Z p comment 

NAO annual -0.02 0.02 0 The pattern is neither clustered nor dispersed. 

NAO winter -0.08 -1.27 0 The pattern is neither clustered nor dispersed. 

NAO spring -0.05 -0.61 0 The pattern is neither clustered nor dispersed. 
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Figure 2. Spatial pattern of correlation coefficients between winter rainfall and 

winter NAO (left) and spring rainfall and spring NAO (right) in the period 

1961-2009. Stations showing significant correlations are marked with X.  

 

In order to test spatial clustering of calculated correlations 

autocorrelation analysis is applied at annual, winter and spring 

level. However, results are not showing any significant 

clustering (Table 1).  

IV. CONCLUSION 

In this paper we have studied relationship between annual 

and seasonal rainfall in Serbia and North Atlantic Oscillation 

for the period 1961-2009. Focus of the research was given to 

spatial pattern of this connection. Therefore, apart from the 

correlation analysis, autocorrelation statistics has been 

applied. Results have shown the strongest correlation for 

winter season. Both annual and winter scale showed negative 

relationship between the investigated parameters. For winter 

season 55 stations showed negative statistically significant 

correlations. All values are plotted on Google maps using a 

plotGoogleMaps package. Results for Serbia fit in to those 

obtained for Europe (Hurrell and Van Loon, 1997). 
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Abstract— In this study, possible future changes in drought 

characteristics in Serbia were analyzed using two drought 

indices, the Standardized Precipitation Index (SPI) and the 

Standardized Precipitation Evapotranspiration Index (SPEI) on 

time scale of 12 months. 

Study showed that the SPEI index is more suitable for 

drought monitoring and projections because it includes 

evaporative demand. According to the EBU-POM model 

projections, it is very likely that the drought frequency and its 

severity will increase in the future. 

Keywords— drought characteristics; SPI; SPEI; Serbia 

I.  INTRODUCTION 

The most common tools for monitoring drought conditions 
are drought indices. Most of them are based solely on 
precipitation, some are based on precipitation and 
evapotranspiration, while others are related to runoff and 
vegetation conditions [1]. Some of the drought indices are 
Palmer Drought Severity Index (PDSI), Standardized 
Precipitation Index (SPI), Standardized Precipitation 
Evapotranspiration Index (SPEI), Crop Moisture Index (CMI), 
Keetch-Byram Drought Index (KBDI), etc. 

Numerous studies used these indices to analyze drought 
characteristics, e.g. in Turkey [2], Greece [3], Iberian 
Peninsula [4], Portugal [1], Czech [5], Serbia [6, 7, 8]. These 
studies are based on observed data sets. In [9], drought 
statistics based on the PRUDENCE multi-model approach are 
estimated. According to [9], British Isles would experience 
more intense short-term droughts but less severe longer 
duration events. The Mediterranean was identified by [10] as a 
particularly vulnerable region to global climate change. 

In this study, we will analyze the present and future 
changes in drought characteristics in Serbia using the SPI and 
SPEI indices estimated from the regional climate model [11, 
12, 13]. 

II. DATA AND METHODOLOGY 

A. Data 

Observed dataset used for model verification comprises 
monthly values of air temperature (29 stations) and 

accumulated precipitation (30 stations) for the period 1961-
1990 and 2001-2010. Stations are equally distributed 
throughout the country. Technical and quality control of these 
measurements were made by the Republic 
Hydrometeorological Service of Serbia (RHMSS). 

Outputs from the atmosphere-ocean two-way coupled 
regional climate model, the EBU-POM [11, 12], are used as 
well. The atmospheric part of the EBU-POM presents 
Eta/NCEP model and ocean part, Princeton Ocean Model 
(POM). The atmospheric model was initialized and forced by 
lateral boundary conditions using fields from the coupled 
atmosphere-ocean general circulation model SINTEX-G. The 
atmospheric model domain covers the greater part of 
European region (Fig. 1) with horizontal resolution of 0.25°. 
The ocean model horizontal resolution over the Mediterranean 
was 0.2°. 

 

Fig. 1. Domain of the EBU-POM regional climate model 

Regional integrations were performed as 30 years’ time 
slices of global model experiments for two periods and climate 
change scenarios: 1961-1990 – the reference period, and 2071-
2100 – projections for the A1B and A2 scenarios. Chosen 
scenarios are known as ‘medium’ and ‘high’ forcing scenarios. 
For the A1B atmospheric concentrations of CO2, at the end of 
21st century, are ~1.8 and for the A2 ~2.2 times higher than 
the present value of ~390 ppm. 

B. Indices 

In this study, we analyzed the main characteristics of 
drought using the Standardized Precipitation Index (SPI) and 
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the Standardized Precipitation Evapotranspiration Index 
(SPEI) on time scale of 12 months. The 12-month time scale 
was chosen because it is proven to be relatively good 
correlated with soil moisture and river discharge. The SPI is a 
popular index because of its simplicity, only precipitation data 
are needed. The National Meteorological and Hydrological 
Services around the world are encouraged to use the SPI in 
order to characterize meteorological droughts [14]. On the 
other side, SPEI can account for the possible effects of 
temperature variability and temperature extremes (through 
evapotranspiration and the water supply-demand relation) in 
the context of global warming [11]. 

Because indices are standardized, comparing climatic 
conditions of areas with different hydrological regimes is 
allowed. The strength of the anomaly is classified as set out in 
Table I [15]. 

TABLE I.  CLASSIFICATION OF INDICES 

SPI/SPEI Values Drought category 

< -2.326 Exceptional drought 

-2.325 to -1.645 Extreme drought 

-1.644 to -1.282 Severe drought 

-1.281 to -0.935 Moderate drought 

-0.934 to -0.524 Minor drought 

-0.525 to 0.524 Near normal 

III. RESULTS 

Both indices obtained with the observed data sets, mapped 
using open source SAGA-GIS software and ordinary kriging 
method, show normal moisture conditions for the period 2001-
2010 (Fig. 2). 

Looking at the SPI values (Fig. 3), moisture conditions in 
the period 2071-2100 will be normal with the exception of 
southwest Serbia and A1B scenario (minor drought). It is in 
accordance with a more distinct decrease of the precipitation 
amount in Serbia [12] for A1B (13 mm/season) than for the 
A2 scenario (6 mm/season). For the period 2071-2100 and 
both scenarios, significant influence of temperature increase 
and precipitation decrease is evident on the spatial distribution 
of SPEI index (Fig. 4). The whole considering area is in the 
category extreme to exceptional drought.  

 

 

Fig. 2. Spatial distribution of the SPI12 (upper) and SPEI12 (bottom) for the 

period 2001-2010 based on observational data sets 

IV. CONCLUSIONS 

The regional climate model EBU-POM reproduces well 
natural moisture conditions. Study showed that the SPEI index 
is more suitable for drought monitoring and projections 
because it includes evaporative demand. According to the 
EBU-POM model projections and looking at the SPEI values, 
it is very likely that the drought frequency and its severity will 
increase in the future, thereby enhancing the associated 
impacts. 
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Fig. 3. Spatial distribution of the SPI for the period 2071-2100 and both 

scenarios A1B and A2 based on the EBU-POM data sets 
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Abstract— Dry spells of varying severities are regular 

occurrences in South Africa, with a climate that varies from sub-

tropical in the eastern part to semi-arid and arid in the western 

part with a mean and highly variable precipitation. To have a 

better understanding of dry spells’ spatial and temporal 

characteristics it is necessary, together with rainfall amount, to 

have information about spatial and temporal distribution of 

number of rainy days. Several distributions were qualified for the 

analysis of monthly total of rainy days for every catchment. Rice, 

Log-Logistic, Singh Maddala, Log-Normal, Extreme Value, 

Frechet, and Rayleigh probability distributions were applied to 

fit a rainfall data for spring, summer, autumn and winter 

seasons, for the selected Eastern Cape Province’s catchments. 

Goodness-of-the-fit selection was done based on the Anderson-

Darling test. Rainfall data source was the Water Research 

Commission’s WR2000, for the period January 1950 – December 

2000. As a final conclusion it can be stated that the Singh-

Maddala distribution fits all-four-seasons’ number of rainy days 

data for all Eastern Cape secondary catchments. 

Keywords— rainfall, rainy days, probability distributions, 

goodness-of-fit, Eastern Cape, dry spells. 

I.  Introduction and study area 
The Eastern Cape is situated in the south-eastern part of 

South Africa, covering 13,9% of South-Africa’s land cover 
with a size of approximately 170 000 square kilometres. This 
province includes coastlines, temperate forests, rolling 
hinterland and semi-desert landscapes. In the southern parts 
mountains and hills are common and in the Karoo flat 
topography is found [1]. The mountainous area in the north 
form part of the Great Escarpment and further south, between 
East London and Port Elizabeth, the Cape Folded Mountains 
start [2]. The Eastern Cape coastline of approximately 800km 
stretches from the north near Port Edward, down south to 
Tsitikamma [3]. 

Characterised by diverse natural beauty, the Eastern Cape 
houses eight of the nine biomes indigenous to South Africa: 
nama-Karoo, grassland, succulent Karoo, forest, savanna, 

fynbos, Albany thickets and wetlands [2]. The diverse fauna 
ranges from benthic macro-fauna, invertebrates to large 
ungulates [3]. The ecological diversity is also characterised by 
a great diversity of climates with the coastal region ranging 
from subtropical conditions prevalent at the KwaZulu-Natal 
border, to the Mediterranean climate at the Western Cape 
boarder. The Karoo has long hot summers and moderate 
winters, and the mountainous areas towards Lesotho and the 
Free Sate often experience snowfall in the winter [2]. 

With more than 300 sunny days per year, the Eastern Cape 
province has more sunshine days than any other province in 
the country. Regular rainfall is common in Great Escarpment 
areas and the lowland coastal belt can have rain all year round, 
whereas the regions west of Port Elizabeth experience winter 
rainfall. The Karoo receives little rain [1]. The province’s 
average rainfall is between 808mm and 1000mm per year [3]. 

In a precipitation trend study for the period 1910 – 2004, 
Kruger [4] found that there was a significant decrease in the 
annual precipitation of the southeastern areas of the Eastern 
Cape. The northwest and northern areas showed a significant 
increase. Furthermore, it was found that the annual 
consecutive dry days during the driest season for the Eastern 
Cape, significantly increased. However, the winter 
precipitation showed no significant trends, therefore it could 
be concluded that the increase in consecutive dry days is due 
to more extreme precipitation with longer dry periods rather 
and a decrease in winter precipitation. Generally, it was found 
that daily rainfall has become more extreme. 

For the period 1960 – 2010, a significant increase in rain 
days across the majority of the Eastern Cape confirms the 
possibility of more extreme daily rainfall, however, a pattern 
of drying was projected [5]. Johnston et al. [6] predicts an 
annual rainfall decrease of about 100mm in the larger part of 
the Eastern Cape. Whereas an increase is more likely to be 
expected to the east of the province [7]. 
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II. Data and methods 
Data for the analysis originate from the Water Research 

Commission funded study “Water Resources 2000” 
(WR2000) [8]. Gauging (point) stations’ daily meteorological 
data have been used for South Africa. As a result, areal data 
were derived per quaternary catchment, including rainfall, 
maximum and minimum temperature, soil water content, soil 
moisture deficit, saturated drainage, vapor pressure deficit, 
minimum and maximum relative humidity, solar radiation and 
reference evapotranspiration. A fifty years’ time span of the 
daily WR2000 data ranges from 01 January 1950 until 31 
December 1999. 

For the purpose of this study a number of rainy days per 
secondary catchment are used, based on the total number of 
rainy days for every month for every quaternary catchment as 
a sub-catchment of a particular secondary catchment, from the 
WR2000 database. Only days having one or more mm of rain 
are taken into consideration (rainfall >= 1mm). 

The following continuous statistical distributions were 
selected for the analysis of monthly total of rainy days for 
every secondary catchment: 

TABLE I.  TABLE 1: THE SEVEN SELECTED DISTRIBUTIONS 

Rayleigh (RLD) 

 

Singh Maddala (SMD) 

 

Rice (RCD) 

 

Log-Logistic (LLD) 

 

Log Normal (LND) 

 

Extreme Value (EVD) 

 

Frechet (FCD) 

 

 

Goodness-of-fit, for every catchment, for every of above 
probability distributions, was performed using the Anderson-
Darling test, following the likelihood ratio statistics between 
the hypothetic distribution and the empirical distribution 
function. The main reason for selected Anderson-Darling test 
is the fact that, despite comparing fitted and theoretical 
(assumed) distribution, it gives more weight to the tail of the 
distribution then the Kolmogorov-Smirnov or Chi-Squared 
test [9]. 

The Anderson-Darling test is defined as: 

H0: The data follow a specified distribution, 

Ha: The data do not follow the specified distribution, 

α: Significance level, 

Test statistic: The Anderson-Darling test statistic is defined 
as  A

2
=-N-S where 

 
where, F is the cumulative distribution function of the 

specified distribution and Yi are the ordered data.  

To perform all the above-mentioned analysis a 
programming language Mathematica version 9 [10] was used. 
Mapping component was done by the Quantum GIS [11]. 

III. results and discussion 
Figure 1 shows temporal distribution of a number of rainy 

days statistics, for all catchments. For the period of fifty years 
(1950-1999) there were no significant oscillations in the 
annual number of rainy days. 

 

Fig. 1.  Number of rainy days annual statistics for all catchments 

Seasonal oscillations are shown on Fig. 2. The highest 
variability is for the summer months (blue colour), and 
partially for the spring (green colour) and autumn (brown 
colour), and the lowest variability is for the winter months (red 
colour). 

 

Fig. 2. Monthly statistics for the number of rainy days for all catchments 

A. Spring 

Two continuous probability distributions, Singh-Maddala 
and Log-Normal, are slightly more represented in fitting the 
number of rainy days during Spring season (September, 
October and November), as shown on Fig. 3, according to 
their maximum Anderson-Darling goodness-of-the-fit test. 
According to Table I, three out of seven probability 
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distributions significantly fit everyone of 58 catchments: 
Singh-Maddala, Rice, and Extreme-Value distributions. Out of 
those three distributions, Singh-Maddala distribution has the 
highest Anderson-Darling values (first quartile, median and 
third quartile). 75% of catchments have the Anderson-darling 
goodness-of-the-fit parameter above 0.793, and 50% of 
catchments have the Anderson-darling goodness-of-the-fit 
parameter above 0.9. 

 
Fig. 3. Spring rainy days probability distributions having max. Anderson-

Darling value 

TABLE II.  TABLE 2: SPRING RAINY DAYS ANDERSON-DARLING VALUES 

STATISTICS 

No. of 

Catchments 

Distribution First 

Quartile 

Median Third 

Quartile 

58 Singh-Maddala 0.793 0.908 0.976 

56 Log-Normal 0.571 0.847 0.923 

58 Rice 0.65 0.825 0.932 

58 Extreme-Value 0.494 0.773 0.88 

16 Log-Logistic 0.512 0.644 0.838 

49 Frechet 0.127 0.273 0.446 

18 Rayleigh 0.174 0.227 0.531 

As shown on Fig. 3, seven probability distributions have 
fitted to rainy days data. For the practical purpose, question is 
can, for some catchments, second best distribution replace 
best-fit distribution, but still have a high Anderson-Darling 
value? As from Table I, the best candidate is a Singh-Maddala 
distribution. 

Figure 4. shows an Anderson-Darling goodness-of-the-fit 
values for the Singh-Maddala distribution, for the Spring 
season. Only 25% of all catchments have goodness-of-the-fit 
values below 0.793, and the Median value is very high 
(0.908). There is enough reasons to conclude that, for the 
practical purposes, a Singh-Maddala distribution fits Spring 
number of rainy days data with high confidence. 

 

Fig. 4. Spring Singh-Maddala goodness-of-the-fit values 

B. Summer 

During summer season (December, January, February) two 
distributions dominate in fitting number of rainy days: Singh-
Maddala and Rice distributions, according to their maximum 
Anderson-Darling coefficient values (Fig. 5). According to 
Table II, four out of seven probability distributions 
significantly fit everyone of 58 catchments: Singh-Maddala, 
Rice, Log-Normal, and Extreme-Value distributions. Out of 
those four distributions, Singh-Maddala distribution has the 
highest Anderson-Darling values (first quartile, median and 
third quartile). 75% of catchments have the Anderson-darling 
goodness-of-the-fit parameter above 0.878, and 50% of 
catchments have the Anderson-darling goodness-of-the-fit 
parameter above 0.92. 

 
Fig. 5. Summer rainy days probability distributions having max. Anderson-

Darling value 

TABLE III.  TABLE 3:SUMMER RAINY DAYS ANDERSON-DARLING 

VALUES STATISTICS 

No. of 

Catchments 

Distribution First 

Quartile 

Median Third 

Quartile 

58 Singh-Maddala 0.878 0.92 0.979 

58 Rice 0.738 0.901 0.967 

9 Log-Logistic 0.69 0.712 0.89 

58 Log-Normal 0.382 0.607 0.767 

58 Extreme-Value 0.389 0.563 0.869 

19 Rayleigh 0.143 0.231 0.8 

48 Frechet 0.067 0.108 0.187 
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Figure 6. shows an Anderson-Darling goodness-of-the-fit 
values for the Singh-Maddala distribution, for the Summer 
season. Only 25% of all catchments have goodness-of-the-fit 
values below 0.878, and the Median value is very high (0.92). 
There is enough reasons to conclude that, for the practical 
purposes, a Singh-Maddala distribution fits Summer number 
of rainy days data with high confidence. 

 

Fig. 6. Summer Singh-Maddala goodness-of-the-fit values 

C. Autumn 

A Singh-Maddala distribution is dominant in fitting the 
number of rainy days during Autumn season (March, April, 
and My), as shown on Fig.7, according to the Anderson-
Darling goodness-of-the-fit test. Other three distributions 
(Rice, Extreme-Value, and Log-Normal) also fit everyone of 
58 catchments, but their Anderson-darling goodness-of-the-fit 
test values are lower than Singh-Maddala distribution, 
acoording to Table III (75% of catchments have the Anderson-
darling goodness-of-the-fit parameter above 0.82, and 50% of 
catchments have the Anderson-darling goodness-of-the-fit 
parameter above 0.92). 

 
Fig. 7. Autumn rainy days probability distributions having max. Anderson-

Darling value 

 

 

TABLE IV.  AUTUMN RAINY DAYS ANDERSON-DARLING VALUES 

STATISTICS 

No. of 

Catchments 

Distribution First 

Quartile 

Median Third 

Quartile 

58 Singh-Maddala 0.821 0.924 0.982 

58 Rice 0.689 0.812 0.935 

58 Extreme-Value 0.714 0.805 0.948 

58 Log-Normal 0.651 0.799 0.917 

8 Log-Logistic 0.613 0.69 0.809 

54 Frechet 0.163 0.226 0.412 

22 Rayleigh 0.085 0.109 0.181 

 

Figure 8. shows an Anderson-Darling goodness-of-the-fit 
values for the Singh-Maddala distribution, for the Autumn 
season. Only 25% of all catchments have goodness-of-the-fit 
values below 0.821, and the Median value is very high 
(0.924). There is enough reasons to conclude that, for the 
practical purposes, a Singh-Maddala distribution fits Autumn 
number of rainy days data with high confidence. 

 

Fig. 8. Autumn Singh-Maddala goodness-of-the-fit values 

 

D. Winter 

During winter months (June, July, and August) a dominant 
distribution fitting number of rainy days is Singh-Maddala, 
followed by Log-Normal distribution (Fig. 9). According to 
Table IV, four out of seven probability distributions 
significantly fit everyone of 58 catchments: Singh-Maddala, 
Rice, Log-Normal, and Extreme-Value distributions. Out of 
those four distributions, Singh-Maddala distribution has the 
highest Anderson-Darling values (first quartile, median and 
third quartile). 75% of catchments have the Anderson-darling 
goodness-of-the-fit parameter above 0.88, and 50% of 
catchments have the Anderson-darling goodness-of-the-fit 
parameter above 0.96. 
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Fig. 9. Winter rainy days probability distributions having max. Anderson-

Darling value 

TABLE V.  WINTER RAINY DAYS ANDERSON-DARLING VALUES 

STATISTICS 

No. of 

Catchments 

Distribution First 

Quartile 

Median Third 

Quartile 

58 Singh-Maddala 0.888 0.956 0.975 

40 Log-Logistic 0.691 0.842 0.93 

58 Extreme-Value 0.658 0.824 0.917 

58 Log-Normal 0.59 0.773 0.917 

58 Rice 0.548 0.748 0.947 

30 Rayleigh 0.085 0.235 0.44 

54 Frechet 0.098 0.2 0.337 

 

Figure 10. shows an Anderson-Darling goodness-of-the-fit 
values for the Singh-Maddala distribution, for the Winter 
season. Only 25% of all catchments have goodness-of-the-fit 
values below 0.793, and the Median value is very high 
(0.908). There is enough reasons to conclude that, for the 
practical purposes, a Singh-Maddala distribution fits Winter 
number of rainy days data with high confidence. 

 

 

 

 

 

Fig. 10. Winter Singh-Maddala goodness-of-the-fit values 

 

As a final conclusion it can be stated that the Singh-
Maddala distribution fits all-four-seasons’ number of rainy 
days data for all Eastern Cape secondary catchments.  
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Abstract— Extended and above normal rainfall across (semi-) 

arid Africa after a warm phase of El Niño creates conditions 

favorable for outbreak of Rift Valley Fever (RVF); a vector 

borne disease.  There have been two major epizootics in the 

Horn of Africa in 1997/98 and 2006/07 that had the highest 

mortality to both humans and livestock. 

 

Our study, at Ijara District- Kenya, characterizes coping 

strategies used by communities in high and low risk areas to 

make themselves less vulnerable to effects of adverse climate 

variability and in consequent RVF outbreaks.  

 

RVF outbreaks resolved to division level werecollated to bio-

physical factors that were significantly associated with the 

outbreaks. Geostatistical analyses were used to identify RVF 

risk areas. At selected risk areas, focus group discussions 

(FGDs) involving the local communities, community health 

workers, and veterinary officers were used to characterize 

coping strategies that were employed in recent RVF outbreak.  

Solonetz, luvisols and vertisols and areas below 1000m were 

significant.  Low areas, fairly flat with a 0 – 15% slope rise 

having these soil types have higher risk compared to the other 

areas. The low and high RVF risk areas were approximately 

split halfway across district, northwards and southwards 

respectively.  

 

From the FGDs, actions taken by communities at high risk 

areas were strategic while those at low risk areas used 

reactive, ad hoc coping strategies. 

 

Communities at high risk areas would cope better to adverse 

climate variability and extended disease burden compared to 

those at low risk areas who lack knowledge of some of those 

strategies.  

 

More needs to be done to understand climate variability, 

disease ecology of RVF, community awareness and 

facilitationas there are at times the whole district is affected by 

the RVF. 
 

Keywords— Rift Valley Fever (RVF), Coping Strategies, Geostatistical 

Analysis, Focus Group Discussion (FGD), Communities, Risk 

I.  INTRODUCTION  

Coping refers to the ability of people, organizations, 
systems or communities, using available skills and resources 
to face and manage (or strategize towards) adverse conditions 
arising from endemic and epidemic diseases, emergencies or 
disasters. Coping strategies are engaged as a livelihood 
diversification by many rural communities; pastoralists and 
agro-pastoralists (in the arid and semi-arid regions) included at 
certain periods of the year to avert extensive losses in main 
sources of livelihood. Some of the periods that cause need of 
development of coping strategies are the unreliability and 
uncertainty of climate, and increased disease burden that 
would greatly impacts ecosystem services, farming and 
livestock keeping which are the main sources of income and 
food to many in the rural areas [1]; [2]. 

Our study area Ijara District, Kenya is part of the Arid and 
Semi-Arid Lands (ASAL) which is mainly inhabited by 
pastoralists. The pastoralists (mainly livestock keepers of 
cattle, shoats and, donkeys) here have overtime had a 
livelihood dependent on the intricate knowledge they have 
gained to adapt and sustain equilibrium in the natural and 
socio-economic environment[3]. 
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Literature [3];[4]reveals that the extent and exercise of 
knowledge however is dependent on coping strategies/ 
household characteristics for timely decisions in climate 
uncertainty and outbreak of diseases, diversity of livestock 
(some animals are hardier than others), mobility (ability to 
utilize the rangelands and other eco-system services without 
depletion), diversification of livestock species and breeds (so 
as to have a wider range of animal products, even to sale in 
terms of crisis), maximization of stock numbers (helps ensure 
survival despite loses during droughts and disease outbreaks) 
and splitting or redistribution of herds (so that in the event of 
extensive losses one can recall from the other members). 

This study focuses on characterization of some of the 
coping strategies that households have practiced over time to 
make themselves less exposed to adverse climate conditions 
and be at a less risk of getting exposed to Rift Valley Fever 
(RVF). RVF is a severe viral disease that over time has been 
observed to cause huge socio-economic losses and death to 
both humans and animals in hundreds of thousands ([5]; [6]. 
There are some bio-climatic and bio-physical indicators that 
have been found to be related and also to be drivers of the 
RVF disease. By way of geostatistical analysis this risk factors 
were analyzed to develop a risk map that depicted areas at 
high risk and low risk of RVF within our study area. Coping 
strategies at these areas were elicited by way of focus group 
discussions. 

II. LITERATURE REVIEW 

RVF is a viral disease that is acute, causing fever in both 
animals (such as cattle, buffalo, sheep, goats, and camels) and 
humans. The disease is associated with mosquito-borne 
epidemics during years of prolonged and above normal rainfall 
with extensive localized flooding. The flooding allows buried 
mosquito eggs, usually of the genus Aedes, to be brought to 
surface to hatch. The eggs having been infected from previous 
RVF outbreak hatch into mosquitoes that transfer the virus to 
the livestock they feed on. As other genus of mosquito 
populations and those uninfected build up, the virus spread is 
amplified once they start to feed on the infected livestock and 
bite other uninfected livestock plus humans. Humans could 
also acquire the disease when they are exposed to blood or 
other body fluids from RVF infected animals. Exposure of this 
kind may happen in the cause of tending to animals delivering, 
slaughtering, sickly or ingesting RVF contaminated meat or 
milk [7]; [8]. 

RVF primarily affects livestock and can cause deaths in 
large numbers; a situation referred to as an epizootic as was the 
case in 1950/51 where there was an estimated death in 
hundreds of thousands of sheep. The RVF virus can at times 
lead to an epidemic among people exposed to animals with 
RVF. Most people do not exhibit RVF symptoms while others 
have been observed to experience mild illness associated fever 
and liver abnormalities. Some people experience more serious 
symptoms like fever, weakness, back pain, dizziness, and 
others suffer extreme weight loss. However, in some advanced 
cases victims suffer hemorrhagic fever, encephalitis 
(inflammation of the brain) that at times led to seizures, coma, 
and eye disease that in some few cases have led to permanent 
eye-sight loss [8].   

The climatic factors which predispose the emergence of 
RVF from the areas in which the infection persists during inter-
epidemic periods have been well documented [9]. Epidemics 
always follow heavy and prolonged, often unseasonal, above 
normal rainfall. Such were the conditions that occurred prior to 
the 1997/98 outbreak in the arid/ semi-arid East Africa, in 
association with the El Niño event that resulted in a serious 
epidemic. The outbreak was of a huge geographic extent and 
impact as it led to ban on livestock trade across all countries in 
the Horn of Africa. From the 1997/98 outbreak more research 
has been put to understand the disease drivers and dynamics 
surrounding the RVF disease and outbreak. Some of these 
primary indicators have been useful in the development of 
early forecasting systems that could help set up measures that 
would reduce, or in some instances avert impending epidemics 
[9]. 

Rift Valley Fever outbreaks occur several years apart, 
irregularly, but when it does occur losses are counted in 
thousands of livestock in the arid and semi-arid areas where 
farmers have little capacity of buying the vaccine and in time 
before the outbreak[10]. In most cases the farmers lack ability 
to identify symptoms of the RVF and by the time they get to 
know there is an outbreak a month after, thus administered 
vaccination helps very little. Some drugs like Ribavirin have 
shown hope in treatment of RVF in animals already exposed. 
Very few pastoralists are able to afford or access the drug [11]. 

At onset of RVF outbreak, some households resort to 
selling most of their livestock to avert losses. This is in 
retrospect makes the actual prices for the livestock actually 
plunge as there are many livestock suppliers. The resultant 
value greatly undermines the household coping strategy to fend 
for family and with very little chance also of being able to 
restock same number of livestock after the outbreak. Media 
coverage of human suffering and livestock loss in the period of 
outbreak greatly affects the image of people and society of 
those affected. After the outbreak it will take a longer period 
for people to readily trade and interact with those from the 
affected areas thus jeopardizing their development and 
recovery[12]. 

Global climate change comes with varied environmental 
stresses/ shocks that make communities vulnerable at various 
points of getting exposed dependent on how well one is 
prepared to face the climate variability 
([14][15];[16][17];[13];[15]) observe that different shocks 
require different coping reactions and strategies. This has been 
seen in many communities where there is difficulty in 
differentiating active coping strategies (like increase in home 
food production, vaccination, restricting livestock movement, 
obtaining of a supplementary job and formal borrowing) and 
weak coping strategies (like sale of assets, introducing child 
labor, reducing/ restriction of food intake, reducing education 
expenses, postponing healthcare, restructuring family to live in 
a smaller house, reliance on external support e.g. friends and 
family, NGOs). 

Weak coping strategies may offer instant solution in light 
of impending need but in the long run seen as a poverty trap 
that a family/ community might fall into. The ability of a 
household to adopt active coping strategies majorly dependent 
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on the household characteristics to differentiate those that are 
poverty driven and those that comes from shocks. There is a lot 
to be done in quantification and understanding of coping 
strategies amongst pastoral and agro- pastoral households. 
More needs to be done in terms of understanding the existing 
environments, climate and diseases, livelihoods, structure and 
characteristics of households and their choice of coping 
strategies in view of the imminent uncertain future[2]. 

III. METHODS AND MATERIALS 

Research design and methodology for the study involved 
identification and mapping of bio-physical factors that are 
significant to outbreak of Rift Valley Fever (RVF). The 
mapped places provided areas that are at risk of RVF. 
Characterization of coping strategies was done by way of 
focus group discussions at the RVF risk areas, see Figure 1. 
Characterization was done by employment of in-depth 
participatory epidemiology techniques and methods. 
Participatory Epidemiology (PE) uses a combination of 
practitioner communication skills and participatory methods to 
improve involvement of animal keepers in the understanding 
and analysis of their livelihoods, animal disease problems, 
design, implementation and evaluation of disease control 
programmes and policies[18]. 

Contrary to conventional data collection methods, PE has 
gained popularity in that with limited research time, financial 
resources and well trained personnel in rural settings it is 
possible to prod for common issues and come up with general 
perceptions for action oriented research to common challenges 
facing a community. The approach used for our study was use 
of focus group discussion that was semi structured discussion 
made around guided conversational themes. 

Main tools used in analysis of the project work are R 
statistical software[19] and ArcGis10x[20]. The R package 
provided a platform where it was possible to identify which of 
the bio-physical variables are significant to outbreak of the 
RVF cases in Kenya divisions. The significant variables were 
input in ArcGis10x where a friction data of the combined 
variables was created. The friction data output was a risk map 
which was then reclassified to depict areas of high risk and 
low risk across the study area, see Figure 1. Within Ijara 
district, locations with relative high and low probability were 
identified.  

These risk map areas informed where focus group 
discussions were to be held in order to characterize the coping 
strategies which communities used. FGDs were held in both 
high and low risk areas in Ijara District. The group sessions 
were noted to a book and flip chart, recorded with a voice 
recorder, GPS location of the FGD taken, and also photos. The 
FGD data for each group was then tabulated in Microsoft 
Excel 2010 to decode and understand the coping strategies 
amongst the different communities. 

 

Fig. 1. Study Area- Ijara District zoomed in. Ijara is one of the eleven 
districts in North Eastern Province, Kenya 

A. Characterization of the study site 

Latest bio-physical data (landcover, soil and elevation) 
was prepared in ArcGis to ensure the data was in one 
geographic coordinate systemand in one kilometre resolution 
for the whole country. Landcover data was obtained from the 
Global Landcover (GlobCover) 2009 database. The 
GlobCover 2009 was aninitiative of the European Space 
Agency that was generated from the Envisat MERIS sensor 
that is able to produce fine scale data in the year 2009.  The 
landcover classes considered for this analysis were twenty two 
in total, consistent with the UN Land Cover Classification 
System (LCCS) [21].    

Soil data was obtained from the Harmonized World Soil 
Database (HWSD) which is a comprehensive database of the 
world for all soil types as per current FAO classification 
system [22]. Elevation data was obtained from the Shuttle 
Radar Topographic Mission (SRTM) 90m [23]. Rainfall data 
was from TRMM for the period December 1997 to July 2013. 
The data is a satellite product of NASA and JAXA services 
that was launched in November 1997 to provide rainfall data 
at a resolution of 0.25degrees[24][25][26][27]. 

Records of RVF outbreak cases as confirmed by the 
Department of Veterinary Services (DVS) for the period 1912 
to 2007 were obtained from the DVS and Centers for Disease 
Control (CDC), [28]. All the outbreak cases can be traced to 
the province, district and division of outbreak but hardly 
georeferenced to the epicenter of the outbreak. An inventory 
of the confirmed RVF outbreak cases traced and reported in 
all locations, hospitals were aggregated to division level. The 
division thus was settled for as the unit of analysis. 
Irrespective of the number of cases, both in human and 
animalsa division reported, it was resolved that a division with 
an outbreak was a ‘case’ and no outbreak as ‘no case’. It was 
further noted that even if a division reported a single outbreak 
over 30 years then it was evidence enough that the division 
has conducive ecological conditions to facilitate a future 
outbreak.  

The division being unit of analysis, spatial analyst within 
ArcGis10x was used to perform summary statistics on the bio-
physical indicators so as to determine by way of majority 
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coverage which feature type was most dominant. The 
dominant feature was then assigned to the division. An entry 
of all the divisions by case and bio-physical data was then 
prepared for input for further analysis in R statistical software. 
Geostatistical Analysis 

B. Geostatistical Analysis 

The aim at this stage was to determine the factors that 
affect the probability of RVF occurrence. The R package was 
chosen for its capability to support analysis of discrete data and 
continuous data. Discrete data for this case was report of 
outbreak cases in each of the divisions while continuous data 
was the biophysical data. This was a very powerful feature of 
the software as it gave opportunity to identify which of the bio-
physical indicators were significant for there to be an outbreak 
in the divisions that reported RVF cases. Generalized Linear 
Models(GLMs) offer a weighted linear regression that can be 
used to obtain parameter estimates of non- linear observations 
as is the case of ‘our’ RVF outbreaks. A variety of GLMs exist 
like the ‘normal’, ‘binomial’, ‘poisson’ and ‘gamma’[29]. 
Generalized Linear Model (GLM) with a Logit link was used 
for this analysis. The model suited our study as the cases of 
RVF at the division level were binomial; ‘present’ or ‘absent’. 
The logit link in the model allows for regression of presence/ 
absence to the explanatory variables; bio-physical data that are 
qualitative data.  

A four stage approach was used; all the bio-physical data 
was run using the model to see which was significant. An 
auto-correlation test was run at this stage to check for bio-
physical data that significantly influenced each other. Single 
data was then run using the model to see which class within 
the biophysical data was quite significant to occurrence of the 
cases. 

C. RVF Risk Map 

From the geostatistical analysis it was possible to make 
observations on which of the bio-physical data and of which 
type are quite significant to outbreak of RVF. The bio-
physical data were then pre-coded for a risk index e.g. 1, 2, 3. 
Where 1 was for areas that probability of RVF risk was high, 2 
for lower risk probability and so forth. ArcGis10x 
environment was used to pre-code the data. Map algebra was 
then utilized in ArcGis to add the data together. Where most 
significant data, for instance areas that had 1s, emerged as 
areas that had high probability risk of RVF. Those areas that 
had low significant values intersecting made the low 
probability areas of RVF. The resultant output is the ‘friction 
map ‘or probability map of RVF risk. 

An RVF risk map was then created by this reclassification 
of high and low risk. The high and low risk divisions in the 
area of study thus informed where the focus group discussions 
would be held. The location to carry out the FGDs was agreed 
with the help of key informants at the area of study which 
locations have over time been considered by both government 
and community as the high and low risk areas.  

D. Focus Group Discussions 

The FGDs were used in the study as a way of 
characterizing coping strategies that households used in their 
livelihoods. In this study, FGD was a discussion of at most 10 
local people, the interpreter and moderator. The discussion 
generally started by way of prayer, introduction of all those in 
attendance then moderator would set the agenda for 
discussion. This was then followed by development of 
seasonal calendar of the past and current climate perceptions 
to the community. Seasonal calendars helped the FGD 
participants contextualize occurrences within a calendar year.  

After the seasonal calendar was agreed on amongst the 
FGD members, the discussion went on into a guided 
discussion for a maximum of an hour. A checklist was used to 
elicit issues that were pertinent to livelihoods, common 
livestock economically and their importance, common 
livestock diseases that have most impact and those that they 
deem to be climate driven, some of the coping strategies that 
the community has used, barriers that deter coping, and 
measures that have been put prior and after a disease outbreak. 
Issues raised were noted, and pair wise comparison used to 
determine what was fairer, important, common or of most 
impact to their livelihoods. Ranking was then used to 
determine order of priority with the first position given to top 
of the issues and the last to depict the one with lowest impact 
or influence. The discussion amongst the FGD members was 
left to go on until they reached a consensus of what position or 
items to consider for a topic of discussion. Items that went into 
pair wise comparison were kept to a maximum of 9 at any 
time. The discussion was then wrapped up by thanking all 
those in attendance, commentary of any other issues directly 
or indirectly related to the agenda, followed by a photo and 
GPS position of the group being taken. 

E. FGD Data Analysis 

The booked data from FGDs were then tabulated into 
Excel. The seasonal calendar was tabulated with the 
corresponding local names alongside. Climate related diseases 
from communities perceptions were also tallied to 
corresponding calendar times. The rest of the issues that came 
up from the guided conversation were also tabulated with their 
respective rank positions. The tabulated results gave different 
insights in terms of priority and action as to how different 
issues were approached by communities. 

IV. RESULTS AND DISCUSSION 

 Most of Ijara is covered by rainfed croplands (6%), and 
mosaicked open/ closed grass lands and shrub lands (48%), 
and broadleaved forest vegetation.  The urban and bare areas 
cover a very small area of the whole district, barely 1% of the 
district.  

The main soil types in Ijara are solenetz, planosols and 
vertisols and have coverage of approximately 42%, 38% and 
17% respectively. The main soil texture types are clay, loam, 
and sandy. The heavy clayey soil is approximately 60% and 
38% of clay loam of the district. 
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The elevation in Ijara district varies from 0 – 90m above 
sea level with the elevation gradient rise from south east 
westwards to the north. Majority of the area is fairly flat with 
many areas having a maximum of 0 to 15% slope rise 
covering 72% of the whole district. 

The RVF cases were extracted from reports obtained from 
the Department of Veterinary Services in Kenya that were 
reported at division level for the period 1912 to 1950. Over 30 
of the total 47 districts in this time have reported RVF 
outbreaks, which is over 63% of all the districts. It is also 
observed that the number of RVF outbreaks in the last 3 
decades have had high impact outbreaks across many 
divisions with more areas reporting the diseases. The peeks in 
this period of outbreaks starting from recent are 2006 – 2007, 
1997 – 1998, and 1989 – 1990.  

TRMM being lowest resolution available at 0.25 degrees 
for the period December 1997 to July 2013 in netdcf. It can be 
observed that the easterly part of Ijara is wetter compared to 
the west with rainfall of over 2mm per day. The data is able to 
capture the rainfall periods ending January, short rains April – 
May. The late 2006 early 2007 RVF outbreak coincides with 
these rainfall periods.  

The longest section across Ijara was just over 1degree in 
distance thus resolving the analysis to this level was a 
compromise to variability anticipated. Hence as much as 
rainfall was quite significant (0.04) to the model it was 
dropped from further analysis in the model. Some landcover 
type was also significant (0.15) but data available was for the 
period 2009, and that would not be reflective of the vegetation 
during the 2006 – 2007 outbreak. 

The data thus retained for analysis in the GLM were soil 
and elevation, see equation 1. 

 

Eq. 1. GLM Model 

The model output showed that when the soils; vertisols, 
solonetz, and luvisols were compared to the other soils they 
had a higher coefficient to explaining the RVF cases, see 
Table 1.  The solonetz and luvisols had almost the same 
coefficient of 1.2 while vertisols were lower at 0.66. Areas of 
elevation between 1000 to 2000m were also compared to areas 
below 1000 and those above 2000m. The areas below 1000m 
had a higher coefficient (2.74) to those at a higher altitude (-
1.99), see table 1. This result helps confirm that the RVF cases 
that occurred in these areas could best be explained by these 
soil types and the elevation. 

From the results, solonetz, vertisols and luvisols covered 
mid-way across Ijara with the ‘Other’ soil types covering the 
rest of the district. Areas that had solonetz and were of less 
than 1000m were areas of highest risk, areas with vertisols 
then luvisols followed in decreasing risk while areas that had 
‘Other soils’ types in the district were of a lower risk, see 
Figure 4. 

 

TABLE 1. Bio-physical Risk Factor Coefficients from GLM model 

 

Variable 

Levels Generalised linear model 

  Coefficients 

(β) 

Standard Deviation (SE) 

of (β) 

Soil type Vertisols 0.66 0.31 

 Solonertz 1.19 0.44 

 Luvisols 1.21 0.58 

 Others 0.00 - 

Elevation 0 -1000 2.74 0.38 

 >1000-

<2000 

0.00 - 

 >2000 -1.99 0.48 

 

Four FGDs were successfully held in Ijara District. From 
the RVF risk map obtained, the locals were consulted as to 
which locality to carry out the FGDs. It was observed that the 
locals’ perception to areas at high risk and low risk of RVF 
agreed with our analysis.  Two FGDs were then carried out at 
high risk (Sangailu and Kotile) and at low risk (Hajmahamad 
and Galmatha; also known as Falmata) divisions, see Figure 2. 
The FGDs were done with the help of a translator who 
understood the local language, Somali. 

 

Fig. 2. RVF Risk Map & FGD location- High Risk Areas are halfway 
northwards of the district. Low risk areas having ‘other’ soil types are midway 
south and to the east. The high and low risk locations agreed on by 
community coincide with Risk Map. 

Coping strategies were looked at as those initiatives taken 
by households prior to a season start so as to reduce risk of 
getting livestock exposed to some of the livestock diseases. 
FGD1s mechanisms in order of priority were separation of 
infected animals, prayer, early treatment of sickly and 
vaccination, early deworming, and splitting or sharing 
livestock to friends and family in other areas to reduce impact. 
FGD2s coping strategies were vaccination, prayer, separation 
of infected animals, securing nets for the young, early 
treatment of the sickly animals, taking extra care of livestock 
left, split any other extra livestock to family and friend for 
keeping, evacuation of area that disease has broken out, and 
early communication of diseases to the government veterinary 

Glm ( model;Cases = Soil + Elevation, family= 

binomial(link = "logit")) 
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department. FGD3 separated animals, vaccination, early 
reporting to government, prayer, moving uninfected animals to 
safer areas, split livestock, provision of nets to the young. 
FGD4s mechanisms were to perform early treatment, burn 
bushes to destroy vector environments, separate animals, 
prayer, and preparation and separation of money for treatment 
of livestock. 

Barriers that impeded coping of households or a 
community were identified as those that could undermine the 
measures taken from being effective and compromises both 
livestock survival and human health. Lack of requisite 
knowledge to diagnose diseases was cited as one of the issues 
impeding coping. FGD1s issues that impeded coping were if 
the disease was internal and could not be detected early, some 
disease symptoms are not well known, inaccessibility of 
medical services to the livestock early enough. FGD2 
mentioned that some drugs seem to no longer work or 
effective when administered to the livestock, there are some 
new diseases which they have no mastery of the symptoms, 
trial and error treatment of diseases many animals and 
inaccessibility of livestock services early enough. FGD3 
observed that there seem to be some diseases that have 
become drug resistant (e.g. Trips), some drugs no longer work 
when administered, lack of knowledge of new diseases, and 
lastly inaccessibility of treatment early enough. FGD4 
mentioned that at times the spread of the disease is too fast for 
them to perform timely treatment, late access of drugs pauses 
many livestock to risk of exposure to disease, and trial and 
error treatment when the disease is not known. 

These are discussions drawn from tabulated results from 
the FGDs. The statements are informed by rank across the 
topic discussions across different FGDs which help in further 
understanding of some of the issues. For example, which of 
the livestock is most affected by the pertinent issues? Which 
of the climate driven diseases is common, and which livestock 
would be most affected? Are some of the measures taken prior 
and after disease outbreak undermined by the barriers that 
impede coping? Are some of the coping strategies related to 
solving the pertinent issues? Are some of the issues common 
and handled in a similar way by all the groups? 

The pertinent issue common to all the groups is livestock 
diseases, followed by wild animal attacks for FGD3 and 
FGD4, famine and flooding for FGD1 and FGD2 respectively. 
The livestock most affected by these issues common to both 
groups are cattle, sheep and goats. The common livestock 
disease and of most impact to their livelihoods is different 
across all groups. All the groups have different opinions of 
which diseases are closely related to climate patterns.  

Some of the issues thought to impede coping could 
adversely undermine some of the strategies that the 
communities have put in place. The groups cite cases where 
the disease occurs internally in the animals without exhibiting 
external symptoms on the livestock, community lacks 
requisite knowledge of the disease and it spreads fast, and 
inaccessibility of some areas due to flooding pose a great 
challenge to evacuating people, animals and in administering 
treatment on time. 

Prayer was appreciated to be very important in many of the 
actions and decisions taken by community towards challenges 
faced. Irrespective of the strategy the communities sought they 
prayed for the action to be blessed. Similar to the actions taken 
prior and after the outbreak; the communities’ choice to 
vaccinate livestock, evacuate areas prone to flooding, culling 
of sickly animals and early reporting to government, is that 
they hope these actions will be blessed.   

From the FGDs it was observed that actions taken by 
communities at the high risk areas were strategic as they took 
actions like vaccination, controlled animal movement with 
awareness to changing climate and disease incidence. Those at 
low risk areas used reactive, ad hoc coping strategies like 
treatment of sick animals’ as opposed to vaccination. It was 
thus observed that those communities at the high risk areas 
would cope better to adverse climate variability and extended 
disease burden compared to those communities at low risk 
areas who lack knowledge of some of those strategies. 

V. CONCLUSION AND RECOMMENDATION 

 This study has clearly shown and given a detailed 
inventory of how GIS techniques and methods can be used to 
characterize and understand coping strategies exercised by 
communities at different areas when faced by different climate 
and diseases. It has been possible to identify bio-physical 
factors that are quite significant to outbreak of RVF. By 
geostatistical analysis, a generalized linear model (glm) was 
used to differentiate the RVF risk index across Ijara district. 
Soils identified as significant occur in most of the flat areas. 
When there is extended flooding there would be pools of 
water suitable for mosquito breeding making these potential 
hotspots for RVF. These factors are corroborated from other 
researches that find them quite significant to outbreaks of RVF 
cases in many low lying areas and are of soil types that have 
high water retention capacity. 

The high and low RVF risk areas were approximately split 
halfway across the whole district, northwards and southwards 
respectively. Both FGD and key informant discussions noted 
that the RVF outbreak always starts in the flood prone areas 
(for example Sangailu, Albaratiro divisions) then spreads to 
the rest of the district. Procedures and policies should be made 
to facilitate containment and support to communities at these 
places both in access to vaccination and evacuation.  

The whole district experiences extended conditions of 
rainfall events and flooding that are driver conditions for 
outbreak of RVF as evidenced by the increased rainfall in the 
2006 – 2007 period. The climate change profile observed by 
McSweeney[30] is there would be a likely increase in mean 
temperatures and rainfall over many areas of Kenya. It being 
subject to El Nino patterns then more research needs to be 
done to understand ecology of RVF in this climate outlook. 
This in effect means that all communities faced by these 
challenges now and later, those at low risk areas will be most 
affected as they are unaware of what strategies to use. 

It also emerged from the FGD discussions that some of the 
(re-)actions (like vaccination, deworming, and early treatment 
of animals) taken by households could be considered as a form 
of coping strategy. It is there perception that if livestock are 
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healthy and free of diseases then they stand healthier in the 
face of an RVF outbreak. How well this works should be 
investigated so that they can be advised accordingly.  From the 
discussions, and also with key informant, it emerged that more 
needs to be done to understand climate variability, disease 
ecology of RVF, community awareness and facilitation 
(information sharing and empowerment of policy makers). 

Other geostatistical models that are able to consider for 
dynamic factors like rainfall and NDVI (at a low resolution 
approx. 5km or less) should be explored. This will make it 
possible to refine the RVF risk map as outbreaks (especially 
those sporadic) can be factored into the model. Other datasets 
like livestock and human population, socio-economic data, 
livelihoods, landcover landuse data should also be factored 
into the analysis in future. The RVF surveillance, diagnostics 
and reporting should also be improved so that cases can be 
reported and controlled early enough below division level so 
as to reduce extent of future impact of RVF disease. 

The study intended to establish whether there was a 
difference in exercise of strategies by communities in 
subsequent RVF outbreaks. A test like Fischer’s, chi- square 
would have been used at that point. This could not be done 
conclusively from the 4 FGDs as it required more discussions 
be carried in the study area. We were constrained by time. 
FGDs still stand as crucial points of information to 
understanding issues and livelihoods of the rural folk. From it 
a more detailed research, household research could be done so 
as to further appreciate individual dynamics that are a 
challenge to coping practices. 
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Multi-variate ensembles are very practical tools for 

assessment of uncertainty in the weather data due to changes in 

future climatic conditions. This paper presents a new multi-

variate maximum entropy bootstrap for generating long samples 

of weather data using R. The model is able to mimic both the 

temporal and the spatial correlations present in the historical 

weather data in addition to the other statistical characteristics. 

The modeling process involves: (i) application of orthogonal 

transformation to de-correlate the multivariate data; (ii) 

generation of the samples of decorrelated data using maximum 

entropy bootstrap; and (iii) inverse orthogonal transformation. 

The multivariate weather data consists of daily precipitation, 

mean temperature, minimum temperature, and maximum 

temperature. An R package is developed to implement the multi-

variate maximum entropy bootstrap. The main advantages of 

using R are: (i) open source; (ii) availability of a number of in-

built statistical analysis packages, models and standard statistical 

tests; and (iii) access to one of the largest collections of user-

developed statistical packages that can be easily downloaded, 

installed and most importantly modified. 

 
Keywords—spatio-temporal, multivariate, entropy, bootstrap, 

orthogonal transformation 

I.  INTRODUCTION 

Weather generators (WG) play an important role in 
modeling integrated water resources systems under uncertain 
future. They can be used for various tasks like (i) filling in the 
missing hydro meteorological data; (ii) downscaling of global 
climate model outputs; and (iii) assessing water management 
decisions under changing conditions. The synthetic replicates 
obtained from the weather generators capture the statistical 
characteristics of the observed weather data, which include: (i) 
basic statistics such as mean and standard deviation; (ii) 
extremes (minimum and maximum); and (iii) spatial and 
temporal dependence structure of all the weather variables. In 
many hydroclimatic studies, the most dominating weather 
variables that are explicitly affecting the water resources 
systems are precipitation and extreme temperature (maximum 
and minimum). These weather variables are collected at 
various locations and exhibit dependence - called spatial 
correlation.  

Based on the spatial correlation, the weather generator 
application can be implemented in one of two different ways: 
(i) single site weather generator where the variables are 

generated independently at each site without the influence of 
other sites; and (ii) multi-site weather generator where the 
variables are generated to include the influence of other sites 
i.e., spatial correlation.  

Research in weather generators offers a variety of tools as 
in [1] and [2] classified as (i) parametric; (ii) non-parametric 
and (iii) hybrid or semi-parametric. The parametric models 
suffer from inherent drawbacks related to reproduction of 
nonlinearity, generation of negative values and bimodality 
present in the historical data. Further, the historical data are 
assumed to be Gaussian in nature, which is not the case in most 
of the weather datasets. The non-parametric models on the 
other hand do not make such assumptions, but rather shuffle 
the data itself, to reproduce the characteristics of the observed 
data.  The major drawbacks of the non-parametric methods are 
that they cannot reproduce values outside the historically 
observed range, and preserve temporal correlation. The models 
which combine the strengths of both parametric and non-
parametric approaches are the hybrid or semi-parametric 
models. In spite of considerable progress, the weather 
generators proposed in the literature are found to be far from 
being universally accepted among the researchers and 
practitioners. The potential reasons may be (i) lack of 
confidence; (ii) complexity and (iii) computational burden. In 
general, the weather generators should be reliable, efficient and 
robust to capture the underlying processes present in the 
historical data.  

In this paper, a new multisite, multivariate Maximum 
Entropy Bootstrap weather generator (MEBWG) is proposed 
which preserves both spatial and temporal correlation, in 
addition to the other statistical characteristics of the daily 
weather data. The proposed MEBWG model combines (i) 
maximum entropy bootstrap (MEB) to capture the time-
dependent structure and other statistical characteristics of the 
historical data; and (ii) orthogonal transformations to capture 
the spatial correlations between the weather variables at 
multiple sites. The MEBWG tool does not apply (i) any 
perturbation for smoothing or for generating extremes; (ii) 
explicit conditioning of variables to preserve spatial or 
temporal statistics; and (iii) disaggregation from low frequency 
to higher frequency. Further, the proposed approach is 
computationally less demanding. 
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II. MULTI-VARIATE MAXIMUM ENTROPY BOOTSTRAP 

METHOD 

The flowchart of the proposed modeling procedure is shown in 

Fig 1. The following section presents the multisite multivariate 

MEB weather generator (MEBWG) model. Let the observed 

weather variables be represented by W and denoted by  

1,1 2,1 ,1 1,2 2,2 ,2 1, 2, ,n n k k n k

t t t t t t t t t
W W W W W W W W W Wé ù= ê úë û

K K K K K  (1) 

where the superscript ‘n’ denotes the weather variable at site 

‘k’ and ‘t’ is the index for time. In matrix form W can be 

expressed as 
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The total number of columns in matrix (2) is equal to N (n 

times k) and the total number of rows is equal to M (total 

number of days). The modeling steps of MEBWG: (A) 

preprocessing; (B) generating replicates; and (C) post 

processing are as follows. 

 

A. Preprocessing 

In this stage, the correlated weather variables are 
uncorrelated by using orthogonal linear transformation. The 
advantage of using orthogonal transformation is that the 
characteristics of the overall observed data are assimilated into 
fewer components in the transformed dataset. The following 
steps are involved:   

Standardize the individual columns of matrix W following 

1,1 2,1 ,1 1,2 2,2 ,2 1, 2, ,n n k k n k
w w w w w w w w w w =  � � � � �    (3) 
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in which, ,n k
W  and ,n kW

σ represent the mean and the standard 

deviation respectively for each of the weather variables at the 
kth site (i.e., each column of matrix W Eq(2)).   

 

Apply orthogonal transformation, such that the matrix ‘w’ 
(Eq.3) is fully uncorrelated (linear dependence between sites 
and weather variables). This is achieved by finding out the  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

eigenvalues and eigenvectors of the covariance matrix 
obtained from the standardized dataset 

r Pw=     (5) 

where r is a scores matrix which is fully uncorrelated vector 
components also known as principal components (PC) and has 

a matrix size same as vector ‘w’, i.e. ( )M N×    
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P is the eigenvectors of the covariance matrix ( )Ω   and is 

given by 

( ) T
COV wΩ = = Ε∆Ε    (7) 

where Ε is the orthonormal eigenvector matrix or loadings 

and ∆  is the diagonal eigenvalue matrix of size ( )N N× . The 

diagonal eigenvalue matrix ( ∆ ) is arranged in descending 
order, i.e., the first element of the matrix has the highest 
eigenvalue then the second and so on.  

The replicates in transformed space can be generated either 
by fitting a generating Maximum Entropy Bootstrap model 
(MEB) to each component (column) of the score matrix (r), or 
by selecting significant columns (principal components) and 
fitting generating model to the selected components. We show 
in the following steps how to generate replicates in 
transformed space for one of the principal components using 
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Fig. 1. Flow chart showing the framework for MEBWG weather generator 
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MEB. The same procedure can be followed to generate 
replicates for other principal components. 

B. Generating Replicates – Maximum Entropy Bootstrap 

The maximum entropy bootstrap (MEB) involves: (1) 
construction of maximum entropy densities which are 
combination of uniform densities (2) sampling data from the 
maximum entropy densities and (3) arranging the sampled 
data according to the historical data ranking. The following 
seven-step procedure is explains in detail the MEB modeling 
procedure for generating: 

Construction of Entropy Densities (Combination of uniform 
Densities) 

1. The data (first column of the matrix ‘r’) is sorted in 

ascending order to create a rank matrix
t

O . This will help 

in ensuring the restructuring of the generated replicates 
would result in similar pattern as observed in the data. 

2. Compute intermediate points (Pt) from the rank matrix,  
using: 

1 1, , 1
2

t t

t

O O
P for t M+

+ 
= = − 
 

�   (8) 

3. To extrapolate beyond the historical extremes (i.e., 
minimum and maximum values),  lower and upper limit 
of the data are calculated using trimmed mean (Ttrim_mean) 

of 
tO  (step 3) 

Then the lower limit is determined as:  

0 1 _trim mean
P O T= −   (9) 

and the upper limit is determined as 

_M M trim mean
P O T= +                           (10) 

where O1 and OM are the minimum and the maximum 
value of the data in Step 3. 

This ensures that the replicates generated are beyond the 
historical extremes. The justification for use of trimmed 
mean in this study includes: (i) robustness to outliers; and 
(ii) high computational efficiency for mixed and heavy 
tailed distributions (very common with some atmospheric 
variables). It is to be noted that many other methods may 
be used instead of trimmed means and this is left for future 
research.  

4. The maximum entropy density is constructed, such that the 
ergodic theorem (mean preserving) is satisfied. The 
following equations are used to calculate the desired 
mean: 

1 1 20.75 0.25m O O= +      (11) 

1 10.25 0.5 0.25 2,3, , 1
k k k k

m O O O k t− += + + ∀ = −�  (12) 

10.25 0.75
t t t

m O O−= +     (13) 

Sampling from Maximum Entropy Density 

5. Uniform random numbers between 0 and 1 are generated 
and the sample quantiles of the maximum entropy density 
at those points are obtained and sorted accordingly. 

Reordering the Sampled Replicates 

6. Using the rank matrix from step 3, the sample quantiles are 
reordered. This step ensures that the temporal dependence 
of the historical structure is replicated.  

7. Steps 4 to 8 are repeated, till the desired number of 
replicates of length ‘M’ are generated 

1 2

1,1 1,2 1,

1 2

2,1 2,2 2,

1 2

,1 ,2 ,

1, ,

k

rep

k

rep

k

t t t rep

r r r

r r r
r rep numrep

r r r

 
 
 ′ = ∀ =
 
 
  

�

�
�

� � � �

�

    (14) 

where ‘numrep’ is the total number of replicate series 
generated 

C. Post-Processing 

Assuming that the first column of the ‘r’ matrix 

(represented as 
1,1

t
r  Eq. 6) is considered for generating the 

replicates in the transformed space (represented as 
1,1

,
1, ,

t rep
r rep numrep∀ = � , where numrep is the total number 

of replicates generated), the  post-processing continues as:  

8. Replace each replicate with the first component in scores 
matrix to obtain the modified scores matrix. For example 
to obtain the first set of replicates in transformed space, 

replace 
1,1

,1t
r  in place of 

1,1

t
r in matrix ‘r’ in Eq. 6 as shown 

below to obtain: 
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9. Using the modified scores matrix, perform inverse 
orthogonal transformation to obtain synthetic weather 
variables at all sites. Note that the entire matrix in Eq. 15 
is used to perform inverse transformation, i.e., no 
dimensionality reduction.  

10. Repeat steps 10 and 11, until the number of generated 
sequences is equal to the total number of replicates to be 
generated. 
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11. Perform inverse standardization to obtain the synthetic 
replicates for all the weather variables at multiple sites. 

The replicates obtained from the proposed model are used 
to calculate summary statistics, dependence structure and 
climate based indices. Implementation examples and the 
application of MEBWG to three river basins are shown in [1] 
and [2]. 

III. IMPLEMENTATION OF MULTI-VARIATE MAXIMUM 

ENTROPY BOOTSTRAP METHOD IN R 

‘R’ is statistical computing software available under the 
GNU General Public License and currently developed by R 
Development Core Team. R has its own programming 
language built on lexical scoping semantics and S 
programming language. R software is written in C, Fortran and 
R and available for various operating systems. R is also based 
on object-oriented programming which creates wider flexibility 
for the programmers to work on objects rather than structured 
programming. Advance R uses can easily link the routines 
from various other programming languages to improve the 
computational performance of the program.  R programming is 
used for computational statistics, visualization and data 
science.  More specifically R can be used for data 
manipulation, statistical modeling and representation 
multifaceted data with charts and graphs. The advantages of 
using ‘R’ are that it is free and open source software. Number 
of statistical analysis, models and standard statistical tests are 
in-built into the R programming language. R also has one of 
the largest collections of user-developed statistical packages, 
which is easy download, install and most importantly modify.  

We developed an R package to implement the multi-variate 
maximum entropy bootstrap. This package consists of three 
main components (i) Pre-processing; (ii) Generation of 
replicates using maximum entropy bootstrap; and (iii) Post-
processing. In pre-processing the collinear multivariate data is 
transformed into linearly independent components using 
orthogonal transformations. This is achieved by using inbuilt 
function ‘princomp’ in R software. We select the first principal 
component from the transformed variables to generate 
replicates using maximum entropy bootstrap. Next we use the 
‘MEboot’ R package [3] developed for data generation of uni-
variate time series using maximum entropy bootstrap. To 
generate the replicates beyond the historical maximum the 
‘MEboot’ package requires the trimmed mean percentage as 
one of the inputs. In order to capture the collinearity between 
the components the replicates in orthogonal space are inverse 
transformed using the scores matrix obtain in first step using 
‘princomp’. The following pseudo R-code shows the 

implementation of the multi-variate maximum entropy 
bootstrap model. 
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IV. CONCLUSIONS 

In this paper, a new multisite, multivariate Maximum 
Entropy Bootstrap (MEBWG) method is presented for 
generating daily weather variables. The method has the ability 
to mimic both the spatial and temporal dependence structure, in 
addition to the other historical statistics. The Maximum 
Entropy Bootstrap (MEB) is suited to the random generation of 
non-stationary time series and involves two main steps: (1) 
random sampling from the empirical cumulative distribution 
function (ECDF) with endpoints selected to allow limited 
extrapolation; and (2) reordering of the random series to 
respect the rank ordering of the original time series (temporal 
dependence structure). To capture the multi-collinear structure 
present between the weather variables and between the sites, 
we combine orthogonal linear transformation with MEB. The 
implementation of MEBWG is done in R.  
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Performing climate change impact analysis requires 

significant amount of data manipulation and analysis. R 

programming language has been used extensively as statistics 

and data analysis tool in the past. Objective of this paper is to 

highlight the utility of R programming language while 

performing climate change impact analysis. The paper offers (i) a 

generalized procedure for the assessment of climate change 

impacts and (b) description of the role that R programming 

language and different R packages can play. 

Keywords-R programming language; climate change impact 

analysis. 

I.  INTRODUCTION 

Growing concern about changing climatic conditions 
across the globe has led to significant amount of research in 
the field of climate change impact assessment. Research has 
been done both to assess the impacts as well as on the 
development of appropriate assessment methodologies. A 
number of studies have been performed at local (for example 
[1]), regional (for example [2]) and global (for example [3]) 
scale which estimate probable changes in climatic and 
hydrologic conditions in future. Presence of a wide variety of 
models/methodologies used in several steps of climate change 
impact studies confirms that none of them is perfect, although 
their efficacy is gradually improving. As a result steps 
followed while performing climate change impact studies 
differ across different studies undertaken in the past. The 
objective of this paper is: a) to outline the series of steps that 
can possibly be involved in a typical climate change impact 
study on flooding frequencies and b) to identify the role that R 
programing language can play in the implementation of these 
steps. The vision is to be able to utilize provided guidelines 
towards framing a uniform methodology for climate change 
impact studies and implement this methodology using R. 

II. CLIMATE CHANGE IMPACT ANALYSIS PROCESS 

This section of the paper describes three major steps 

involved in a typical climate change impact study on flow 

extremes (as summarized in Figure 1). These steps are: (i) 

selection of future climate projections, (ii) pre-processing of 

global climate model (GCM) data and (iii) generation and 

analysis of future stream flow projections. 

 
Fig. 1. Steps involved in a typical climate change impact study on flow 

extremes. 

A. Selection of climate model projections 

A total of twenty three climate models have been identified 
by the Intergovernmental Panel on Climate Change in their 4

th
 

assessment report (AR4) [4] and they have been found to 
reproduce historical observed climate reasonably well. 
However, none of the models is able to do it perfectly. It is 
therefore recommended in AR4 that projections from every 
model should be considered equally plausible in future and 
should be included while providing future climate projections. 
Three Special Report Emission Scenarios (SRES) have been 
utilized extensively in AR4 and Representative Concentration 
Pathways (RCPs) are used in detail in upcoming IPCC 5

th
 

assessment report (AR5). For generation of flows, climate 
model data for climate variables precipitation (ppt), mean 
temperature (tmean), maximum temperature (tmax) and minimum 
temperature (tmin) is required for baseline (reference) and 
future timelines. One of the major reasons that hinder usage of 
all model-scenario combinations is the lack of continuous 
climate data for these climate variables. In spite of data non-
uniformity, large ensembles of climate model data are 
available for usage.  Historical and future data as well as the 
changes projected by these models differ from each other 
significantly. 
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Climate model selection has been performed in the past to 
fulfil one of the following two objectives: 1) to choose from 
the range of projections made by the ensemble or 2) to 
encompass the projections made by the multi-model ensemble. 
Former approach can be performed by considering averaged, 
weighted-average or selected projections for analysis. This 
approach has been extensively used for designing climate-
informed water resource systems in the past although it 
compromises with the total uncertainty associated with GCM 
projections. Latter approach can be performed by using 
methods like scatter-plot selection and percentile selection. In 
the scatter-plot method, GCM-scenario combinations most 
likely to produce hydro-climatic weather extremes are 
selected. Cold-dry, cold-wet, hot-dry and hot-wet scenarios in 
terms of mean changes projected are selected for analysis. In 
percentile method, selection is made to capture the entire 
range of changes projected by GCMs. Generally, scenarios 
corresponding to 5

th
, 25

th
, 50

th
, 75

th
 and 95

th
 percentile of the 

entire range of projections are selected for analysis.   

Dependency of these model selection methodologies on 
the spatial, temporal and distributional scale selected is 
explored using a method that compares probability density 
functions of historical observed and model simulated data and 
allots a skill score measured by the extent of their overlap.  

Selection of model-scenario combination can be made a) 
based on mean changes projected by the multi-model 
ensemble and b) based on extreme (mean above 99

th
 

percentile) changes projected by the ensemble. The 
implementation of this process shows that model rankings 
differ in each of experiments performed. This suggests that 
selected climate projections as well as model performance 
depends on the spatial, temporal and distributional scale 
chosen for analysis [1]. 

B. Pre-processing of model climate data 

Climate model datasets are associated with low spatial, 
temporal and distributional resolution. They have typical 
horizontal spatial resolutions of 2° x 2° which is close to 220 
km x 220 km. This means that physiographic characteristics of 
such a huge area are approximated into one grid cell of the 
climate model data. Spatial extents of grid points exceed the 
catchment scales at which climate change impact studies are 
typically performed. Climate model datasets are available in 
yearly, monthly and recently in daily time steps. Climate data 
obtained from GCMs are associated with some time-
independent component of model errors called biases. These 
biases are evident when simulated climate model data for 
baseline are compared with historical observed data at the 
same location. Most hydrologic models require climate 
variable data at gauging stations in hourly time steps for 
generating stream flows. To make the raw climate data usable 
for catchment scale hydrological analysis, methods such as 
bias-correction, downscaling and temporal disaggregation are 
employed. 

C. Bias correction of gridded GCM climate data 

 While performing climate change impact studies, bias 
associated with climate model data can be roughly but safely, 
defined as the time independent component of model error or 

the component of model error which remains constant 
throughout the length of datasets. The purpose of bias 
correction step is to modify climate model data in a way that 
the correlation between model and observed data increases. [1] 
shows that the changes projected by raw and bias-corrected 
climate data differ significantly. Methods employed to do the 
bias correction range from those correcting just the means to 
those correcting entire distributions of climate data. The 
amount of uncertainty associated with bias-correction 
approaches has been even found to be comparable to that 
associated with climate model projections. 

D. Statistical downscaling 

Downscaling is a method for improving the spatial 

resolution of GCM output. Two distinct groups of approaches 

exist for doing so. First group is known as the dynamic 

downscaling approach in which local physiographic 

information along with GCM boundary conditions are used to 

generate higher resolution Regional Climate Model (RCM) 

datasets. The dynamic downscaling process is highly 

computationally intensive. Further, dynamically downscaled 

results are governed significantly by associated GCMs and so, 

they too are uncertain.  

 

Another less computationally demanding approach for 

downscaling GCM data is known as statistical downscaling. It 

is based on the principal that regional data is dependent on 

large scale climate state as well as local physiographic 

features. Information regarding large scale climate state is 

generally extracted from the GCMs while different parametric, 

semi-parametric and non-parametric methods are employed to 

transfer this large scale information to local scale. Future 

projections obtained using different downscaling 

methodologies can be significantly different from each other.  

 

E. Disaggregation of daily climate model data to hourly 

timescale 

Climate model daily datasets need to be disaggregated to 

hourly timescale before they can be used for hydrological 

simulations. Capturing the hourly variability of climate 

variables accurately is important for simulating daily 

hydrological response of the catchment. Disaggregation of 

daily temperature data into hourly timescale is straightforward 

and simple methods like the cosine formulae have been found 

effective in doing so. Disaggregation of precipitation is much 

more complicated than temperature because of the 

unsystematic variability involved at a sub-daily scale. 

Methods used currently for disaggregating daily precipitation 

include a) uniform distribution of daily rainfall across the day; 

b) stochastic temporal disaggregation of daily data; c) use of 

detailed information from a nearby station to perform 

disaggregation; and d) multivariate disaggregation by 

employing a combination of b) and c).  

 
Detailed analyses by [1] suggest that choice of 

downscaling method can have a significant effect on future 
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projections and that the uncertainty associated increases with 

the number of methods taken into consideration. 

 

F. Hydrological modeling 

Selection of hydrological model can be made based on 

several factors including size of catchment under analysis, 

availability of climatic and hydrologic data, usage history of 

hydrologic models within the catchment etc. If the catchment 

is small (<100 km
2
 in area) lumped hydrological models can 

be used. However, for medium and large catchments (>100 

km
2
 in area), semi-distributed or distributed models can be 

used. Further, continuous hydrological modelling is necessary 

while estimating peak runoff from a catchment.  Hydrological 

model structure is found to be the most significant source of 

uncertainty in this step. Parameter uncertainty in hydrologic 

models due to equifinality and robustness requirements under 

changing climatic conditions are some of the other sources of 

uncertainty associated with this step. Further, changes in land-

use and reservoir release should contribute heavily towards 

framing future flow peaks. However, uncertainty associated 

with these two sources has been explored in lesser details than 

the other sources till now. 

 

G. Statistical analysis 

Statistical analysis is performed on time-series of peak 

flows to develop relationships between flood frequency and 

flood magnitude. There are two prominent methods of 

extracting peak flow data from a discharge series, namely 

Annual Maximum (AM) and Peak Over Threshold (POT) 

method. In AM method, yearly maximum discharge values 

while in POT method, discharge events larger than a specified 

threshold are selected for analysis. Major limitation of AM 

method is that the values extracted may not be representative 

of actual peaks in the entire discharge series. Another 

limitation is that sample size of peak flows obtained from the 

AM method is small (equal to the number of years of 

discharge series data) and hence, reliable statistical inferences 

are hard to be drawn from it. POT method, on the other hand, 

overcomes these limitations and is extremely useful especially 

when the available discharge series is short. Selected flow 

peaks can be fitted using an appropriate distribution and flow 

quantiles corresponding to chosen return periods can be 

estimated. Uncertainty in flood frequency analysis methods 

may arise due to differences in assumption of extreme value 

statistics, choice of sample, choice of distribution function, 

choice of parameter estimation method and statistical 

inference method. 

 

III. USE OF R PACKAGES 

Different steps that have been performed and potential role 
of R packages used in the process presented in the previous 
section are summarized below:  

A. Interpolation of climate model data 

Climate model data is provided in the NetCDF format and 
can be accessed in R using packages like “ncdf”. Three 
dimensional gridded datasets in a NetCDF file are arranged 
according to latitude (lat), longitude (lon) and time (t). These 
variables as well as the datasets can be extracted using 
“get.var.ncdf (filename, variable-name)” function in the 
“netcdf” package. Extracted datasets can be interpolated at the 
location of interest using algorithms like inverse distance 
square method. Data corresponding to four climate model 
gridpoints surrounding the location of interest are used and 
interpolation is made based on their distances from the 
location of interest. 

B. Evaluation of climate models 

Climate models are evaluated by their ability to reproduce 
historically observed climate. In R, data corresponding to 
gauging stations and climate models located within the area of 
interest can be extracted using packages like “maptools” and 
skills of different climate models can be established. 
Formulation of the indices of skill evaluation can be made 
within R. 

C. Selection of future climate model projections 

Assessment of the uncertainty is a major objective of any 

climate change impact analysis study. Uncertainty of future 

emission scenarios can be assessed using methods like scatter-

plot and percentile selection. Percent and absolute changes 

projected for precipitation and temperature respectively can be 

calculated and used to select extreme GCM-scenario 

combinations in R. GCM-scenarios corresponding to “cold-

dry”, “cold-wet”, “hot-dry” and “hot-wet” extreme scenarios 

can be selected using scatter-plot method while those 

projecting 5
th

, 25
th

, 50
th

, 75
th
 and 95

th
 percentiles of changes 

are selected using percentile method. 

 

D. Bias correction of climate data 

Bias in climate model data arises from the fact that climate 

models are imperfect. It can be corrected using methods 

correcting data means or those correcting entire distributions 

of climate model data. Different steps involved while doing so 

ranging from a) establishment of bias-correction functions b) 

estimation of parameters involved c) estimation of corrected 

climate data can be performed in R with ease owing to its 

statistics and data analysis capabilities. 

 

E. Downscaling of climate data 

Downscaling is a technique used to estimate climate data 

at a local scale. Climate model datasets available at low spatial 

resolution are used for doing so. Statistical downscaling can 

be performed in R. Change factors based statistical 

downscaling is one of the methods that can be used for doing 

so. Distribution based change factors can be estimated and 

future scaled climate can be used in weather generators to 

estimate future climate data at a local scale. Weather 

generators like KNN-CAD v4 are solely developed in R [5]. 
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Several packages like “timeseries” and “lubridate” have been 

used in the weather generator to facilitate analysis of climate 

variable time-series data. 

F. Disaggregation of daily climate data 

Many hydrologic models require climate data input in 

hourly time-steps. However even the most recent climate 

model datasets are available only in daily timesteps. 

Disaggregation is a process of converting daily scale climate 

model data into hourly scale. Several methodologies for 

disaggregating precipitation and temperature data have been 

recommended [1]. Simple (for instance cosine function 

method to disaggregate temperature, uniform disaggregation 

of rainfall) as well as more complicated spatial and temporal 

statistics based methodologies can be implemented using R 

interface and R packages like “timeseries”, “sp”, “rgdal” and 

“maptools”. 

 

G. Hydrologic modelling 

Hydrologic modelling in R can be performed for small 

catchments. Packages like “hydromad” are available which 

provide users with an ensemble of multiple multiple lumped 

models. Using more than one hydrologic model is also 

essential in climate change studies to capture the uncertainty 

associated with hydrological modeling step. Several other 

packages like “HydroGOF”, “HydroTSM” are also useful for 

performing statistical tests on hydrologic data. 

 

H. Flood frequency analysis 

Flood frequency analysis is performed to estimate 

relationship between flood magnitude and return period. 

Different steps involved while performing flood frequency 

analysis: a) Selection of extreme flow datasets b) Fitting of 

appropriate distribution function c) Estimation of distribution 

function parameters d) Establishment of flood magnitude-

return period relationships can be performed by utilising 

statistical and data analysis capabilities of R. Some of the 

packages that are useful while doing so are: “Lmoments”, 

“Lcomco” etc. 

 

IV. CONCLUSION 

The paper presents a generalized procedure for the 
assessment of climate change impacts and identifies the role 
that R packages can provide. A number of steps in the 
presented procedure are executed using R   and those that are 
not yet are identified for future development. 
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KNMI is the Dutch national institute for weather, climate 

research and seismology. It disseminates weather and climate 
information to the public at large, the government, aviation and 
the shipping industry. KNMI conducts observations, develops 
models and performs fundamental research on the climate 
system. Interpolated datasets are becoming more and more 
important: environmental changes, such as global warming, 
force governments to develop policy to counter any adverse 
effects. For example hydrological models are part of the tool 
set used to develop and evaluate policy. These models require 
gridded maps of meteorological parameters such as rainfall, 
temperature and potential evaporation. KNMI has several 
ongoing projects to generate such gridded maps using point 
observations as a basis. The common goal of the research 
projects is to obtain the optimal interpolation method for each 
meteorological parameter and to optimize the dissemination of 
the interpolated maps to the users using innovative web 
services. 

 

I will present the Climate Atlas project and the datasets 
needed for the national project “Nationaal Hydrologisch 
Instrumentarium (National Hydrological Toolbox)”. Prior to 
1990 many parameters were measured on 5 to 16 weather 
stations. After 1990 these parameters were measured on about 
30 automatic weather stations scattered around the 
Netherlands. The limited number of measurements poses great 
challenges for interpolation of 30 year time series as needed by 
retrospective and future climate studies. Therefore, we tested 
several methods including inverse distance weighted 
interpolation, multiple linear regression, thin plate splines and 
kriging. Quality information of the datasets is provided to the 
users in the form of cross-validation results and kriging 
variance. In the project we use R for statistical computing and 
graphics, including the gstat package. For research and 
production purposes we developed the GeoSpatial Interpolation 
Environment (GSIE) which is a shell including the R 
environment, database connections and OGC web services for 
visualization. 

 

We provide the datasets through the recently developed 
KNMI Data Centre (KDC: http://data.knmi.nl). KDC has been 
built on open standards and proven open source technology, 
which includes in-house developed software like ADAGUC 
WMS, the NADC data processing framework and a web portal. 
KDC includes 1) A user-friendly interface for (meta)data 
management; 2) Search capabilities using ISO 19115 
(INSPIRE) compliant metadata available through a Catalog 
Services for the Web (CSW) server combined with deep search 
on geolocation and time; 3) NetCDF-CF files downloadable 
through FTP and HTTP services; 4) Viewing services based on 
the OGC Web Mapping Service Standard (WMS).  

 

In the keynote presentation I will present the entire 
interpolation chain including the latest developments of 
KNMI’s GeoSpatial Interpolation Environment (GSIE), the 
interpolation techniques, the datasets, data dissemination 
through KDC, future research, issues and challenges. 
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I.  INTRODUCTION  

When calculating climatological variables in regular grids 
geostatistical methods prove to be very powerful. However, 
operationally we are faced by many challenges as the 
consequence of imperfect reality. The basic input in 
spatialisation procedure are measurements with their 
measurement error. The spatial density of point measurements 
is never adequate for our demands and is homogenous neither 
in space nor in time. The use of auxiliary variables with higher 
spatial density to resolve the spatial variability of the treated 
variable can help, but again, the coverage of measurements 
regarding the auxiliary data domain should be high enough. 
Another issue regarding measurements is their representativity, 
which could be inadequate for the task we have to solve. 
Inclusion of modern, remote sensing measurements with 
relatively good spatial coverage in spatialisation process is 
often advantageous but poses another challenge, how to ensure 
temporal homogeneity of calculated grids. Finally, there are 
user demands, which are reasonable, but sometimes from the 
above described or some additional reasons unsolvable for data 
providers. 

 

II. DATA 

Climatological variables in regular grids are calculated 
from different measurements using more or less sophisticated 
methods or models. The point in situ measurements are still the 
basic input data for calculation of grids on regional, local or 
smaller level. All the measurements have their own 
measurement error, which is, in most cases, small in 
comparison to errors and uncertainties aroused from the 
spatialistaion process. More crucial is the question of spatial 
measurements density on which depend both: the scale in 
which the spatial variability could be treated and the final 
spatial resolution. The lack of point measurements we try to 
substitute by the inclusion of auxiliary variables with higher 
spatial density, which are well correlated with and could help 

to explain the spatial variability of the treated variable. One of 
the very frequently used auxiliary variables in climatology is 
elevation, which is especially well correlated with mean 
temperature. Using it we encounter another problem – the lack 
of high elevation mountainous stations. Fig. 1 shows a high 
deficit of measurements on elevations above 1000 m in 
Slovenia. In such cases there is a high risk of extrapolation 
instead of interpolation if using auxiliary variables. 

Another issue regarding data availability and data density in 
local scale are country (regional) borders. Usually data across 
the border are not available or their density is very low. In that 
case, especially in very odd shaped regions, the grid points 
close to the border have higher error than inner grids and their 
value uncertainty is much higher. This difficulty is obvious 
when we try to merge the grids from different regions and 
encounter discontinuities on the border (Fig. 2). The 
discontinuities could be very large when the border is in the 
complex terrain. One of the possible solutions is inclusion of 
across border measurements in the spatialisation process, but 
the discontinuities can not be completely avoided, especially if 
the variability of the treated climate variable is very high. 

 

 

 

Fig. 1. The relative frequency distribution of Slovenian terrain (brown line) 

and of the meteorological stations (climatological stations blue line, 

precipitation stations magenta line) according to the altitude. 
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Fig. 2. Frequency distribution of relative differences between Austrian and 

Slovenian summer precipitation grid (period 1971–2000) in 1 km wide belt on 

the country border. Slovenian grid is calculated twice: once only with 

Slovenian measurements and second with additional 28 cross border 

measurements. It is obvious that additional measurements narrow the 

distribution towards smaller differences, however, the differences are quite 

large in both cases. Slovenian precipitation estimations are slightly biased 

towards higher values than Austrian. 

 

One of the modern challenges regarding data, that we are 
facing presently or will have to face in near future, is a wide 
spectra of different (new) measurements (also in situ). The 
problem is not purely spatialistaion problem but affects 

spatialisation process a great deal. It rises a question how to 
assure continuity and temporal homogeneity of grids and at the 
same time take advantage of additional (but different) 
information from new technology measurements. 

III. AUXILIARY DATA 

The selection of auxiliary variable should always base on 
physical relation between treated and auxiliary variable. 
Usually the spatial density of auxiliary variable is much higher 
than the density of treated variable, or at least the spatial 
correlation structure of treated variable is well known and 
similar to the spatial correlation structure of the treated 
variable. As already mentioned, when selecting auxiliary 
variable, we should be careful that the values range of both 
variables is similar to avoid extrapolation problem. 

Beside the geographical variables (original and derived 
ones) there are many other variables that can help us to explain 
spatial variability of the treated variable. The remote sensing 
measurements of meteorological variables (radar and satellite 
data) have a great advantage because of their good spatial 
coverage. However, their absolute values are biased and 
inhomogenous in space. Combining remote sensing and in situ 
measurements can improve spatialisation results. Spatial 
resolution can be increased and small scale structures, which 
would be overlooked by the in situ measurement network, can 
be resolved (Fig. 3). High resolution remote sensing data can 
also be used only to define spatial correlation structure of the 
treated process (Fig. 4). 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. Radar precipitation measurements in 1 km resolution with indicated in situ precipitation stations (left), Spatial distribution of precipitation in 1 km 

resolution, using only in situ measurements (middle) and spatial distribution of precipitation in 1 km resolution, using combined in situ and radar measurements 

(right). It is obvious that with existing in situ measurement network a fine structure of convective precipitation is overlooked. On the other hand, radar 

measurements show the fine structure of convective cells but the absolute values are not reliable due to attenuation, shading and other errors of radar 

measurements. Using both kind of measurements in the spatialisation process, we get the fine convective structure in the precipitation field and absolute values of 

precipitation are in accordance with in situ measurements. 
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Fig. 4. Empirical variogram map for selected precipitation event. The left one is calculated from in situ measurements, the right one is calculated from the radar 

measurements. While the strong anisotropy in spatial correlation is evident in the radar variogram map (right) it is imposible to deduce anisotropy from the in situ 

variogram map (left). 

IV. SPATIAL RESOLUTION 

The demand for high resolution grids is constant but the 
final resolution of grid is limited by the spatial density of the 
input data and by the spatial variability of the treated variable. 
As already mentioned in the chapter 3, there are possibilities to 
improve the resolution of the grid. One of them is inclusion of 
auxiliary variable(s). In some cases we can also improve the 
final resolution by incorporating the physical knowledge of the 
spatial realisation of the treated variable. Fig. 5 shows an 
example of using a simple physical model to improve the final 
resolution of wind potential grid. 

V. USER DEMANDS 

With the growing computer power there seem to be no 
limits for the demanded spatial resolution of grids. Other two 
frequent user requests are high temporal resolution and (near) 
real time production of grids. In the effort to meet user 
demands we are often led to exaggerate and produce grids with 
very high uncertainty and errors. That is why it is very 
important to communicate the information of grids uncertainty 
and their quality to the users. Personal communication (if 
possible) is proved to be the best, because the uncertainty 
information, which is simply added to the products, is often 
ignored by the users. 

 

Fig. 5. Wind potential map calculated from wind speed measurements (17 measuring points) using Inverse distance weights interpolation method (left) and 

combined method approach: mass-consistent physical model, regression, one dimensional mathematical Bora model, local influences (right).
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Fig. 1 - The study area for this research includes the Karakorum and Hindu Kush mountains.  Elevation data are from 

GTOPO30 [4], glacier extents are from the Randolph Glacier Inventory [5], and country boundaries are from the Global 

Administrative Areas database [6]. 
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Abstract— A statistical downscaling method is 

presented for producing 30-arcsecond monthly time-series 

of precipitation, mean temperature, minimum 

temperature, and maximum temperature from GCM data.  

These downscaled data can be produced efficiently for any 

global land area, requiring the user only to specify their 

region of interest.  To highlight one use of these data, a 

metric called potential snowfall is calculated for the 

Karakorum and Hindu Kush region from 2020 through 

2100.  These data show that potential snowfall is 

decreasing over this period and that this change is very 

spatially heterogeneous.  Therefore, using these 

downscaled data offer a readily apparent advantage 

compared to using the relatively low spatial resolution 

GCM output directly.  These tools are open source and 

freely available at GlobalCliamteData.org.  

Keywords— downscaling; climate data; monthly 

precipitation;  monthly temperature; snowfall 

I. INTRODUCTION 

High-spatial resolution time-series of climate data are 

critical for many hydrological and earth science studies, yet 

these data are unavailable for most global land areas.  Previous 

work by Mosier et al. [1] developed a downscaling package 

written in Matlab for producing 30-arcsecond monthly time-

series hindcasts of monthly precipitation, mean temperature, 

minimum temperature, and maximum temperature.  These 

data are useful for studying climate over the twentieth century.  

The present work expands the downscaling package for use 

with any GCM projection run associated with the Coupled 

Model Intercomparison Project Phase 5 (CMIP5) [2].  GCM 

projection data.  Therefore, the updated downscaling package 

can be used to produce globally available monthly projections 

at 30-arcseconds for the twenty-first century.  These 

downscaled data have the same temporal features as the 

original GCM data but include finer scale orographic effects 

not present in the original GCM.  As a demonstration of the 

new downscaling package’s utility, it is used to model 

potential snowfall for the Karakorum and Hindu Kush (KHK) 

mountain region of Central Asia (shown in Fig. 1). 

II. METHODOLOGY 

The current expansion of the downscaling package by 

Mosier et al. [1] includes an algorithm for downscalig GCM 

projection data.  The two basic components of the GCM 

downscaling algorithm are to bias correct the GCM data and 

then to spatially downscale it using a Delta method [3]. 
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The form of bias correction used is quantile mapping (an 

example is shown in Fig. 2).  The first step of the quantile 

mapping procedure is to calculate cumulative distribution 

functions (CDFs) for each gridded dataset used and at all grid 

locations.  Each CDF is composed of the time-series elements 

over a range of years, for a 3-by-3 cell window centered on the 

cell being bias-corrected.  These CDFs are first produced for 

the GCM historic run and Climate Research Unit (CRU) [7] 

gridded observational datasets at all cells in the region being 

downscaled for the years 1950-2000.  A transfer function is 

then calculated from the GCM CDF to the CRU CDF at each 

percentile of the CDFs (an example value of the transfer 

function for the cumulative probability of 0.1 is denoted by the 

dotted line, A, in Fig. 2).  The resulting transfer function is 

then applied to a projection run from the same GCM (example 

for cumulative probability of 0.1 denoted by the arrow, B, in 

Fig. 2), creating a bias-corrected GCM projection time-series. 

The downscaled data are produced both with and without 

the bias correction step in order to quantify the uncertainty in 

the bias-correction step.  There are several other sources of 

uncertainty related to the current downscaling method.  For 

example, as is shown in Mosier et al. [1], errors in the hindcast 

output from the downscaling package are strongly correlated 

to errors in WorldClim [8], the reference climatology dataset 

used in the downscaling package.  Additionally, WorldClim is 

a representation of climatic conditions from 1950-2000.  

These precise high-spatial resolution relationships (e.g. 

relating to lapse rates) are expected to change in the future due 

to larger-scale changes in the climate, such as changes in the 

lapse rate feedback [9].  Despite these assumptions and 

uncertainties, the 30-arcsecond downscaled projected GCM 

data produced using the downscaling package add useful 

information about the spatial distribution of climatic 

conditions within each GCM cell.  For example, the 

downscaled monthly precipitation and mean temperature 

GCM data are useful in studying projected changes in 

potential snowfall over the twenty-first century.  

III. EXAMPLE APPLICATION 

As an example of these downscaled data, an ensemble of 

downscaled data are produced for a region encompassing the 

Karakorum and Hindu Kush (KHK) mountains (Fig. 1), which 

is a region where seasonal snowpack and glacier mass balance 

contribute significantly to seasonal stream flow [10].  

Ensemble members include the MPI-ESM-MR (developed by 

the Max Plank Institute, GISS-E2-H (developed by the 

Goddard Institute for Space Studies), and BCC-CSM 

(developed by the Beijing Climate Center), which are all 

members of CMIP5 [2].  Monthly precipitation and mean 

temperature data from these GCMs are downscaled for the 4.5 

and 8.5 representative concentration pathways (RCPs) [11].  

Monthly precipitation and mean temperature data from these 

GCMs are downscaled for 2020-2100 and processed to form a 

metric which the authors refer to as potential snowfall.  

Potential snowfall is defined as the incident precipitation in 

cells where the temperature is at or below 0 
o
C.  A result of 

this analysis is that the annual potential snowfall for the 

ensemble mean (i.e. all three GCMs and both RCPs) decreases 

by approximately 17% from 2020 to 2100 and 20% between 

2100 relative to the 1950-2000 hindcast climatology.   

The changes in potential snowfall for the KHK region are 

very spatially heterogeneous.  These spatial gradients are not 

present if the GCM data are compared at the original 

resolution.  Assessing potential snowfall using only the 

 
Fig. 2 – Cumulative distribution functions (CDFs) of mean temperature gridded products used in bias 

correction for January at the grid cell centered at (68.7 
o
W, 33

o
 N). The CDFs displayed correspond to: 

CRU monthly time-series from 1950-2000 (denoted observational time-series), GISS historic run for 1950-

2000 (denoted GCM historic run), GISS GCM projection run for RCP 4.5 from 2020-2010 (denoted  GCM 

Projection Run (original)), and the bias-corrected version of the GISS GCM projection run for 2020-2100 

(denoted  GCM Projection Run (bias-corrected)).  The dotted line, A, refers to the transfer function at the 

0.1 CDF value and the arrow, B, refers to the application of the transfer function at the 0.1 CDF value. 
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original resolution GCM data, these high spatial resolution 

changes would not have been detectable.  Knowing the spatial 

distribution is of snowfall is important because the energy 

balance of snow varies substantially by location, which 

changes the length of snow storage and timing of its release 

[12].  
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Abstract—The growth in number of Earth sensors and 

increase in data volumes have raised a problem of observations 

integration, data analysis and reasoning over the integrated data. 

The two initiatives are building an interoperable environment for 

Earth observations: the Sensor Web Enablement and the 

Semantic Sensor Web. The standards for web services and 

observation encodings are resolving syntactic interoperability 

between sensors. The Semantic Web standards are enriching 

observations with description of data semantics and thus 

improving data integration. The paper demonstrates the building 

of Semantic Web for Earth observation data. It explains 

development of meteorological data ontology and provides an 

example of transforming meteorological data into Resource 

Description Framework data model. Although at the very 

beginning, the current implementations have proved the 

Semantic Web as an emerging technology for Earth observations 

integration and web computational modelling. 

Keywords—Earth observations; Sensor Web; Semantic Web; 

meteorology; ontology; RDF data model 

I.  INTRODUCTION 

Key emerging trends in Earth observations include the 
growing number of sensors, growth in data volume, real-time 
processing, distribution via Web, crowdsourcing etc. There is a 
need for integration of Earth observation data coming from 
various sensors that will allow analysis and reasoning over 
integrated data. These trends can be found in reports such as 
the Report on future trends in geospatial information 
management by UN Committee of Experts on Global 
Geospatial Information Management [1]. 

The work presented here discusses current efforts in 
building the Semantic Web as an interoperable environment for 
Earth observations. The Open Geospatial Consortium (OGC) 
initiative called Sensor Web Enablement (SWE) has defined 
open standards for exploiting Web connected sensors. The 
standards include encodings for describing sensors and sensor 
observations, and interface definitions for web services. The 
syntactic interoperability is achieved by adoption of these 
standards, but semantics of observations remain ambiguous. 
The Semantic Sensor Web initiative by World Wide Web 
Consortium (W3C) extends SWE standards with spatial, 
temporal, and thematic description of observations by 
ontologies. There are three main reference ontologies for 
building Earth observations ontologies. W3C Semantic Sensor 
Network (SSN) ontology models sensor devices, systems and 
processes; W3C Time ontology models temporal concepts such 

as instants, intervals, durations etc.; OGC GeoSPARQL 
standard models geospatial objects and their topological and 
geometrical properties. To build domain ontology, such as 
ontology for meteorological data, one should define basic 
concepts in the domain and relations among them. To enable 
integration of data from various domains, domain ontology 
concepts should be linked to concepts in reference upper 
ontologies. 

Implementation of the Semantic Web technologies for 
Earth observations is at the very beginning. There are projects 
such as European research project TELEIOS that builds Virtual 
Earth Observatories [2], or National Aeronautics and Space 
Administration project that builds Semantic Web for 
computational modeling of the impacts of changing climate 
[3]. Looking at scope of the projects and organizations that 
implement them, the Semantic Web will be emerging 
technology not only in integration of Earth observations but 
also in web computational modelling of geospatial and 
temporal data. 

The remainder of this paper is organized as follows. Section 
2 briefly describes the OGC Sensor Web Enablement initiative. 
Section 3 provides main information about the Semantic 
Sensor Web initiative by W3C. Section 4 explains the 
development of meteorological data ontology. It also provides 
an example of transforming meteorological data into Resource 
Description Framework (RDF) data model. Finally, we present 
the conclusions. 

II. SENSOR WEB ENABLEMENT INITIATIVE 

There are millions of sensors, in and around the Earth, 
collecting massive amounts of data. Sensors could be from a 
barometer at fixed location to hyper-spectral sensor on board of 
a satellite. Each sensor observes a certain condition (wind, 
pressure, etc.) in a particular place and time. This spatio-
temporal information is stored on the sensor or directly sent to 
server, but having its own data format and software for 
processing, and its own semantics. Overwhelming number of 
observations must be processed and explained, and thus we 
need interoperability between the heterogeneous sensor data 
and applications. 

The OGC SWE initiative is developing the global standards 
to enable discovery, exchange, processing of observations and 
controlling of sensor systems via the Web. The standards 
include encodings for describing sensors and observations, and 
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interface definitions for Web services. The built and prototyped 
SWE standards include the following [4]: 

• Observations & Measurements Schema 

• Observations and Measurements XML encoding 

• Sensor Model Language 

• Sensor Observations Service 

• Sensor Planning Service 

• SWE Common Data Model 

• SWE Services Common 

• PUCK Protocol Standard 

• Sensor Alert Service 

• Web Notification Services 

The SWE enables interoperability between sensors, models 
and decision support systems as shown on Fig.1. It is a 
middleware layer that provides description and discovery of 
sensor assets and capabilities, access to data, tasking of 
sensors, and subscription to alerts. The goal of SWE is a 
distributed sensing system in which information is globally 
shared and used by all networked clients. Some current SWE 
implementation efforts are listed in [4]. We will mention the 
organization 52North that provides a complete set of SWE 
services under General Public License. 

However, while the syntactic interoperability is achieved by 
adoption of the SWE standards, the semantics of observations 
remain ambiguous. Also, the SWE standards do not provide a 
basis for reasoning that can ease development of advanced 
applications for discovery and retrieval of sensor data. 

 

Fig. 1. SWE framework 

III. SEMANTIC SENSOR WEB INITIATIVE 

The Semantic Web is an extension of the Web facilitating 
users to find, share, and combine information more easily. It is 
a vision of "Web of data" that can be readily interpreted by 
machines, instead of today "Web of documents" that can be 
read by people. Semantics, or meaning, of information on the 
Web is formally defined by ontologies. The Semantic Web 
stack builds on the W3C standards: Resource Description 
Framework (RDF), SPARQL Protocol and RDF Query 
Language (SPARQL), Ontology Web Language (OWL), 
Extensible Markup Language (XML), and Uniform Resource 
Identifier (URI). These technologies provide machine-readable 
descriptions of the content of Web documents and reasoning 
algorithms for automated information search. 

To improve semantic interoperability and integration of 
sensor data, the SWE initiative is enriched with Semantic Web 
technologies. The Semantic Sensor Web initiative by W3C 
extends SWE standards with spatial, temporal, and thematic 
description of observations by ontologies. These ontologies 
allow integration, classification and reasoning over the sensors 
data and observations.  

The Semantic Sensor Networks Community Group is 
developing Semantic Sensor Network (SSN) ontology which 
models sensor devices, systems, processes, and observations 
[5]. The SSN ontology is domain independent and it merges 
sensor-focused, observation-focused and system-focused 
views. It is aligned with the DOLCE Ultra Lite (DUL) upper 
ontology to facilitate reuse and interoperability. The SNN is a 
formal OWL Description Logic ontology available as single 
OWL file [6]. It consists of 41 classes and 39 properties. Fig. 2 
shows a small part of SSN ontology with a central concept: 
Sensor, as the broadest concept of any entity capable of 
sensing. The nine SNN classes (shown on Fig. 2 as white 
ovals) are connected by properties. The property subClassOf 
(shown on Fig. 2 as arrow with no filled head) means: e.g. any 
member of Device class is a member of System class, and of 
Physical object class. The arrows with filled heads show 
various properties, but their names are omitted from Fig. 2 due 
to figure size limits. E.g. observesOnly is the property linking 
Sensor with Property. Some classes are linked with the upper 
ontology classes of DUL ontology (shown on Fig. 2 as grey 
ovals). E.g. Property class is subclass of Quality class. 

There are concepts not described with the SSN: e.g. units of 
measurements, locations, features and property hierarchies. 
The idea is that knowledge engineers of particular domain 
include domain feature ontology, location and units ontology 
by linking them to SSN ontology. E.g. SSN ontology is 
combined with NASA SWEET (Semantic Web for Earth and 
Environmental Terminology) ontology modelling the Earth 
observed properties. 

Although recently published, the SNN ontology is already 
being used in several projects. The examples and uses of the 
SSN ontology are given in [7]. Some of them are: SENSEI and 
SPITFIRE projects in the EU's Seventh Framework 
Programme; the projects of the Kno.e.sis Centre at the Wright 
State University; the projects of the 52North organization and 
the SemsorGrid4Env project. Linked Sensor Data and Linked 
Observation Data are projects of the Kno.e.sis Centre. The 
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projects RDF datasets contain description of circa 20.000 
weather stations and hurricane observations in the USA since 
2002. The datasets are part of the Linked Open Data. These 
projects have shown that the use of SNN ontology is enabling 
integration of sensor data with other data and applications 
relying on Semantic Web technologies like RDF and SPARQL. 

 

Fig. 2. Part of SSN ontology aligned with the DOLCE Ultra Lite ontology 

classes (colored in grey) 

IV. DEVELOPMENT OF METEOROLOGICAL DATA ONTOLOGY 

AND RDF DATABASE 

Ontology represents knowledge of a domain as a hierarchy 
of concepts (also called classes), their properties (also called 
attributes) and relationships. Ontology languages are used to 
construct ontologies. The current W3C standards are: OWL, a 
formal language based on description logics; RDF; and RDF 
Schema. Domain ontology represents concepts of a particular 
domain. Upper ontology represents concepts applicable across 
a range of domain ontologies (e.g. SUMO or DOLCE 
ontology). To enable integration of data from various domains, 
the domain ontology concepts should be linked to concepts in 
the reference upper ontologies. In addition to taxonomic 
hierarchies of classes and properties, the ontology can state 
axioms constraining the possible interpretations and describe 
the logical inferences that can be drawn from asserted data. 

Several methodologies are guiding experts in the process of 
ontology building, but there are two main steps (Fig.3). In first 
step, an expert models the domain knowledge: define basic 
concepts and relations among them, and define axioms and 
rules for data interpretation and reasoning. The second step is 

to link the domain concepts with concepts in reference upper 
ontologies. One should consider the reuse of the already 
developed ontological resources. 

 

Fig. 3. Ontology building process 

The Croatian Meteorological and Hydrological Service is 
publishing meteorological data in XML files. Fig. 4 shows an 
excerpt from the XML file. Each file contains 8 meteorological 
observations from 38 weather stations for a particular date and 
hour.  

 

Fig. 4. Excerpt from XML with meteorological data 

Our attempt aims to facilitate the use of meteorological 

data by adding semantic description and offering as RDF data. 

We started with by searching existing ontological 
resources. We have considered the W3C SSN ontology, W3C 
Time ontology and OGC GeoSPARQL ontology as the 
reference ontologies. Fig. 5 shows the links between the main 
concepts in the three reference ontologies. Observation is a 
subclass of Temporal entity, and thus it has its beginning and 
end. Observation and Feature of Interest are subclasses of 
Feature, and thus they have their geometries. By linking SSN 
ontology to GeoSPARQL ontology, the sensor concepts may 
have complex descriptions of their geospatial characteristics 
such as types of geometry, coordinate reference systems and 
topological relations. The Geography Markup Language 
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(GML) and well-known text (WKT) standards are used for 
geospatial data encoding. 

 

Fig. 5. Links between the main concepts of the three reference ontologies 

By extending W3C SSN ontology, we have defined basic 
concepts and their relationships for the meteorological 
observations stored in XML file. Fig. 6 shows some 
meteorological classes, their relationships and links to W3C 
SSN, OGC GeoSPARQL and W3C Time ontology. 

New defined meteorological classes and their relationships 
can be encoded in a TBox part of knowledge base. The TBox 
contains ontological schema describing terminology and data 
semantics. The definition of new class 
TemperatureObservation and its relationship with Observation 
class is written in OWL language with Turtle RDF serialization 
as follows: 

dhmz:TemperatureSensorOutput rdf:type owl:Class. 

dhmz:TemperatureObservation rdf:subclass ssn:Observation. 

The prefixes dhmz, rdf, owl and ssn in the above statements 
are URI abbreviations (e.g. rdf is abbreviation of 
www.w3.org/1999/02/22-rdf-syntax-ns#). A URI provides a 
global identification for a Web resource. 

A key feature of OWL is its ability to describe class by 
restricting the values allowed for certain properties. It allows us 
to make inferences about members of a class. The description 
of class TemperatureSensorOutput by restriction is as follows: 

dhmz:TemperatureSensorOutput rdf:type owl:Class; 

 rdfs.subClassOf 

 [rdf:type owl:Restriction; 

  owl:onProperty ssn:hasValue; 

  owl:allValuesFrom dhmz:TemperatureValue]. 

The above statements will classify all instances as members 
of class TemperatureSensorOutput for which all values of the 
property hasValue come from class TemperatureValue. 

Having classes and properties written in the TBox, we can 
encode meteorological observations in an Abox part of 
knowledge base. The ABox contains asserted instances. For 
example, air temperature of 22

o
C, measured at the weather 

station Crikvenica at 18 o'clock on May 24, 2014. This 
observation is encoded as follows: 

TemperatureObservation_Cr_2405201418 rdf:type 
dhmz:TemperatureObservation; 

 dhmz:observationResult 
 dhmz:TemperatureSensorOutput_1234; 

 geo:hasGeometry dhmz:geo_WS_Crikvenica. 

dhmz:TemperatureSensorOutput_1234 rdf:type 
dhmz:TemperatureSensorOutput; 

 ssn:hasValue dhmz:TemperatureValue_1; 

 dhmz:hasTime dhmz:TemperatureDateTime_1. 

dhmz:TemperatureValue_1 ssn:hasQuantityValue 
"22"^^qudt:DegreeCelsius. 

dhmz:TemperatureDateTime_1 time:inXSDDateTime "2014-
05-24T18:00:00"^^xsd:dateTime. 

In order to add geospatial location to the above observation, 
the weather station Crikvenica is defined as a point with 
coordinates and a coordinate reference system: 

dhmz:geo_WS_Crikvenica rdf:type geo:Point; 

 geo:asWKT 
"<http://www.opengis.net/def/crs/EPSG/0/3765> 
POINT(35787.4 5005291.0)"^^geo:wktLiteral. 

The TBox and ABox use the same RDF data model and the 
same OWL encoding language. The data and their description 
(semantics) are stored together and can be queried together by 
SPARQL. Moreover, sensors data from other sources can be 
converted to RDF, merged into one federated RDF database, 
and queried together with their semantics. 
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Fig. 6. Some meteorological classes (white ovals), their relationships and links with SSN, GeoSPARQL and Time ontology classes (grey ovals) 

An example of SPARQL query over federated RDF 
database is presented bellow. The query shows which weather 
stations (labeled with ?ws) are within which national parks 
(labeled with ?np). 

SELECT ?ws ?np 

WHERE { 

?ws rdf:type dhmz:Wather_station; 

 geo:hasGeometry ?geo_ws. 

?np rdf:type hrnp:National_park; 

 geo:hasGeometry ?geo_np. 

?geo_ws geo:sfWithin ?geo_np. 

} 

In the previous example, the federated RDF database is 
merged from two imaginary RDF databases: dhmz (could be 
the RDF database of The Croatian Meteorological and 
Hydrological Service) and hrnp (could be the RDF database of 
Croatian Registry of National Protection Areas). GeoSPARQL 

property sfWithin defines topological relations between 
weather stations and national parks. The example clearly 
demonstrates the power of RDF data model in integrating data 
which could be used for the integration of Earth observations. 

V. CONCLUSIONS 

Our attempt was to explain and demonstrate the building of 
Semantic Web for Earth observation data. The new 
technologies are emerging and able to integrate, process, and 
explain overwhelming number of observations. The current 
efforts encompass two initiatives: the OGC Sensor Web 
Enablement and the W3C Semantic Sensor Web. Recently 
developed standards are already successfully implemented 
throughout many projects and it seems the Semantic Web 
technologies will take a significant place in integration of 
sensor data and applications. 

In this paper we have briefly described Semantic Web 
concepts and we have demonstrated a domain ontology 
development combining thematic, spatial and temporal 
ontologies. The meteorological data available in XML files 
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published by the Croatian Meteorological and Hydrological 
Service is converted into RDF data model. Enriched with 
semantics, the meteorological data can effectively be used with 
data from other sources. The example of SPARQL query 
demonstrates the integration of data from two RDF databases 
and use of the GeoSPARQL topological relation property 
stWithin. 

Instead of commonly used W3C Basic Geo Vocabulary 
standard which can only describe points with latitude, 
longitude, and altitude in the WGS84 coordinate reference 
system, we have used GeoSPARQL standard which provides 
complete semantics of geospatial objects and their spatial 
relations. 

In our future work we will explore qualitative spatial 
reasoning over the integrated Earth observation data by 
building more complex OWL models. 
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Abstract— Comprehension of dynamic soil properties at the 

field scale requires measurements with high spatial and temporal 
resolution. Sensor networks provide frequent in situ 
measurements of soil properties at fixed locations, providing data 
in 2- or 3-dimensions and through time (3D+T). Spatio-temporal 
interpolation of 3D+T point data produces continuous estimates 
(maps) that can then be used for prediction at unsampled 
locations, as input for process models, and can simply aid in 
visualization of properties through space and time. Regression-
kriging with 2D+T data has successfully been implemented for a 
daily air temperature dataset using terrain and temporal 
imagery as covariates. In this paper, we extend that approach to 
develop models for mapping soil moisture, temperature, and 
salinity using regression-kriging on 3D+T data. Currently, the 
field of geostatistics lacks an analytical framework for modeling 
3D+T data, so our long term objective is to develop robust 3D+T 
models for mapping soil data that has been collected with high 
spatial and temporal resolution. 

For this analysis, we use the Cook Farm dataset, which 
includes hourly measurements of soil volumetric water content, 
temperature, and electrical conductivity at 42 points and five 
depths, collected over five years. Cook Farm is a 37 hectare 
experimental farm in the northwest of the United States; it is host 
to variable soils, cropping systems, microclimates, and landscape 
positions. The dataset also includes a digital elevation model, 
topographic wetness index, soil unit description map, daily 
meteorological data, and annual satellite imagery (for 2011-
2013). The sensor data, combined with the spatial and temporal 
covariates, provide an ideal dataset for developing 3D+T models. 
The presentation will include preliminary results and address 
main implementation strategies. 
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Abstract— The frequent occurrence of heavy rainfall in 

Serbia during June and October causes flash floods in many 

areas resulting withsignificant economic losses. Consequently, 

themost partof the annual local community budget is diverted to 

the reconstruction of the disasters caused by floods every year. In 

RHMSS, through the DRIHM project, aHBV model, distributed 

hydrologic model is in the process of assessment as a tool for 

early warning of the flash floods. This model is a part of the 

OpenStreams, anopen source distributed hydrologic modeling 

environment. Here we use OpenStreams HBV-96 setup 

embedded in OpenDA and based on the open source python-

pcraster library. Dynamic input data for the model are gridded 

time series of the observed precipitation, mean temperatures and 

potential evaporation. Representation of the catchment 

characteristics is given through the digital elevation map, land 

cover as well as soil map and the river network is calculated from 

the topography map. Precipitation well-distributed in time and 

space is vital part of the input data preparation, especially when 

there are not sufficiently long time series of measured 

precipitation data available. In this study we are examining 

sensibility of the HBV model to different interpolation methods 

for precipitation distribution on Jadar river basin. The basin is 

selected on the basis of its position and exposure to southwestern 

circulation bringing convective cloudiness and significant 

precipitation amounts. Several interpolation methods were 

chosen from Python extension NumPy. For every method gridded 

precipitations were used as input to HBV, and time series of 

discharge are produced. Given the fact that hourly precipitation 

data are available from only two main meteorological stations, 

the verification of the interpolated precipitation is done by 

comparison with daily accumulated amounts from precipitation 

stations. The dissimilarities are also presented through the 

difference between measured and simulated discharge. 
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Abstract— The main aim of the CARPATCLIM (Climate of 

the Carpathian Region) project was to make gridded 

climatological database and Digital Climate Atlas of the larger 

Carpathian Region as one of the final products, freely available. 

The data are for the period between 1961-2010, on 0.1o spatial 

and daily temporal resolution. A dozen of essential 

meteorological variables, together with variety of climate indices 

are presented with downloading possibility. The homogenization, 

harmonization and interpolation of data were carried out 

through regional cooperation, overcoming some common 

problems with the use of unified methods. MASH (Multiple 

Analysis of Series for Homogenization) software was used in each 

of the participating countries for quality control, homogenization 

and harmonization of observed climatological data, while MISH 

(Meteorological Interpolation based on Surface Homogenized 

Database) was applied for spatial interpolation. The Digital 

Climate Atlas was developed as a Web GIS application based on 

modern web standards. Additionally, one very important product 

is the Metadata Catalog, designed as a searching tool of metadata 

database by various parameters. It contains all the metadata 

developed within the project, together with the original 

observations metadata. All the work was performed with the 

objective to contribute to availability and accessibility of both 

climate data and metadata, in order to be used for studies of 

regional climate variability and regional climate change as well 

as studies in applied climatology.. 
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Abstract— Acquisition and analysis of meteorological data is 

crucial for prediction of climate changes, drought and flood. 

Concerning that this dataset contains a geospatial component 

and covers long periods of time it requires a specialized GIS 

(Geographic Information System) for suitable processing and 

visualization. Also in order to make these data available to a 

wider scientific community it is recommended to provide a Web 

based GIS solution (Geoportal ARSO 2013, Czech Republic 

Climate Atlas 2013). The CARPATCLIM (Climate of the 

Carpathian Region) Web GIS represents the main entry point for 

accessing, visualization and analysis of all relevant metrological 

data acquired on the CARPATCLIM project. The main goal of 

this project was to create a gridded climatologic database for the 

Carpathian region in a daily temporal resolution for the period 

1961-2010 by using 0.1° spatial resolution. The dataset includes 

fourteen essential meteorological variables (temperature, 

precipitation, pressure, global radiation, wind speed and 

direction, etc.) and variety of climate indices (Standardized 

Precipitation Index, Palfai and Reconnaissance Drought Index, 

Palmer Drought Severity Index etc.). The basic functionality of 

CARPATCLIM Web GIS is to display a particular variable for a 

particular day as a raster colored grid or as a set of isocontours, 

along with the automatically calculated information about 

minimal and maximal values inside the displayed grid. The grid 

is underlaid with a raster relief map and a vector map of country 

borders. Advanced features include visualization of averaged 

grid values for a custom defined time period. Time period can be 

defined on a monthly, yearly basis or for a particular day, month 

over a specified year span. All calculations perform in real time 

due to an efficient database organization resulting in fast data 

retrieval. The results can be downloaded as an image or in 

standard raster data format, which is suitable for further 

processing. 
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Abstract — This paper demonstrates an attempt to apply 

Support Vector Machines regression (SVMr) on meteorological 

data. The objective was to predict daily air temperatures for 

continental part of Europe for 1.1.2011. Supplied training set was 

based on temperature records of 357 weather stations throughout 

Europe and additional attributes (extracted from appropriate 

grid maps), comprising of MODIS satellite image for 1.1.2011, 

elevation, coastline distance and surface insolation. The SVMr 

algorithm was then optimized by means of 10-fold Cross 

Validation and obtained parameters were used to learn a 

regression rule and expand it to the entire continent. The chosen 

data resolution of 0.036 arc degrees (approximately 4 km) was 

sufficient to give rough temperature estimation on the specified 

date. A separate validation set of another 200 weather stations 

throughout Europe was supplied to evaluate the modeling 

performance. Resulting RMSE of about ±2°C proved that there 

is a good potential of applying SVMr or similar Machine 

Learning based techniques for extrapolating measured 

temperature data. 

Keywords — air temperature; Support Vector Machines; 

regression; MODIS; Europe 

I. INTRODUCTION 

Air temperature maps, alongside with precipitation and 
cloud cover maps, are probably the most common weather 
forecast products used for informing the public on a daily 
bases. They are also used in larger scales in agriculture, 
industry, traffic (especially air traffic), energy consumption 
analysis, natural hazards, tourism etc. Short-term (several 
hours) to mid-term (several days) temperature forecasts are 
usually of the utmost interest, and numerous researchers have 
shown how these could be successfully predicted by various 
numerical deterministic, geostatistical and soft computing 
techniques [5, 8]. The latter appeared as an alternative to 
conventional meteorological and climatic models and have 
turned particularly applicable in cases with multiple 
meteorological parameters and multiple weather scenarios 
which are more difficult to cope with by deterministic (finite-
element-based or finite-difference-based, such as HIRLAM) 
models [8]. This is a reasonable and logical trend from another 
aspect – synoptic meteorological measurements are becoming 

more available. There are numerous Earth Observation systems 
nowadays that provide meteorological data with higher 
temporal and spatial resolutions on global scales. On the other 
hand, there are local or site-specific observatories specialized 
in collecting weather conditions at points of interests, with 
unprecedented accuracy and resolution. 

Soft computing techniques for predicting air temperature or 
other meteorological variables, such as solar radiation, 
precipitation, wind speed etc, are usually based on neural 
network computing, including Multi-layer perceptrons, Radial 
Basis Functions, regression networks and similar techniques 
[6]. Some researchers have even compared different techniques 
and highlighted importance of synoptic information and 
selection of particular scenarios [2, 9]. However, novel 
approaches are indicating that regression Support Vector 
Machines (SVMr) technique is more accurate and more reliable 
for prediction of various meteorological parameters [3, 4, 10, 
11]. 

This paper is an example of such SVMr application and 
focuses on spatial prediction (spatial interpolation) of peak air 
temperature for a single day for continental part of Europe (Fig. 
1), based on publicly available open data (Table 1). One of the 
foci is also experimenting with possibilities to include some 
less-common, non-meteorological spatial variables that could 
be well correlated with air temperatures, such as various 
morphometric parameters, land cover type, etc. 

II. DATA AND PREPROCESSING 

Typical predictor variables for large scale prediction of air 
temperature include max/min temperature, precipitation, 
relative humidity, sunshine duration, cloud cover, air pressure 
and so forth [1]. Synoptic situations arising from large scale 
circulation patterns (e.g. North Atlantic Oscillation, based on 
Hess-Brezowsky classification), are also suggested for long-
term temperature prediction. These patterns can significantly 
affect the weather conditions in Central Europe throughout the 
year [7, 11], but this was not the case in presented research 
mostly because the prediction was confined to a single day. 
Instead, some other predictors have been considered. 
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TABLE I.  GENERAL DATASET INFORMATION 

Data Description Resolution Source 

air 

temperature 
total of  weather stations throughout Europe (dependent variable) point data 

GSOD and ECA&D datasets for 1.1.2011, at 

http://www.ncdc.noaa.gov/ and http://www.ecad.eu/ 

elevation 
Digital terrain model from Shuttle Radar Topography Mission 

resampled to a coarser resolution (predictor) 
100m/4kma 

SRTM 30+ and ETOPO DEM available at 

http://worldgrids.org 

wetness index 
relation of the catchment area a and slope b ln(a/tanb), 

expressing the water retention potential (predictor) 
4km derived from elevation 

surface 

insolation 

total amount of solar radiation energy received on a given 

surface area during a given time (predictor) 
4km 

derived from elevation and Sun position calculator 

available at http://pveducation.org/ 

coastline 

distance 
euclidean distance from Europe’s coastline (predictor) 4km 

calculated from continents.shp available at 

http://www.arcgis.com/ 

MODIS 

image 

LST MOD11A2 Level 2 product, with thermal bands 31 (10.78–

11.28�m) and 32 (11.77–12.27�m), resampled (predictor) 
1km/4kma 

Earth Observing System Data and Information System 

EOSDIS http://reverb.echo.nasa.gov/reverb/ 

land cover 
simplified CORINE Level 1 classes: urban, agricultural, forested 

bare, wetland and water bodies cover types, resampled 
100m/4kma 

CORINE  Land Cover, European Environment Agency 

http://www.eea.europa.eu 

latitude geographical coordinate in degrees for each grid cell (predictor) 4km calculated from 4km grid converted to points 

longitude geographical coordinate in degrees for each grid cell (predictor) 4km calculated from 4km grid converted to points 

a. Original/final resolution. 

 

 

Fig. 1. Location of considered weather stations (yellow squares represent stations used fot training and black dots represent stations used for validation) 

The dataset included the following predictors: ground 
elevation, topographic wetness index, surface insolation, 
coastline distance, MODIS satellite image, land cover and 
lat/long coordinates (Table 1). 

It has been reported [4, 5] that DTM derivatives are usually 
well correlated with air temperature or its gradient. In addition 
to commonly familiar temperature dependence on elevation, 
temperature can depend on the type of the surface material and 
surface morphology or roughness. In this respect, wetness 
index and land cover types are included as predictors to 
simulate the influence of different material type and different 
water content, respectively, while surface morphology is 
modeled by insolation or surface solar reflectance. Insolation 

depicts distribution of sunlight and shadow, i.e. depicts 
differences in exposure to the sunlight. It is also well known 
that large water bodies impose gradual inland shifts in air 
temperature, which is why the distance from the coastlines is 
included as a predictor. Another well known fact is the 
difference in temperature on different locations on the Earth’s 
surface due to its geometry and incident angles of the Sun. This 
was the underlying reason for including the lat/long 
coordinates, as they allocate position on the (spherically 
approximated) Earth’s surface. Finally, MODIS satellite image 
from TERRA satellite, MOD11A2 product in particular, was 
included. It records the Earth’s surface thermal emissivity, 
which directly influences the near surface air temperature. 
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The weather station data were obtained by combining two 
publically available repositories. The first included Global 
Surface Summary of Day (GSOD) dataset, archived at 
NOAA’s National Climatic Data Center (NCDC) under the 
code NCDC DSI-9618, while the second included data from 
European Climate Assessment and Dataset (ECA&D) project. 
For the purpose of this research only maximum daily 
temperatures for 1.1.2011 were used (out of dozens of 
available meteorological parameters). The data from GSOD 
and ECA&D have been merged and cleaned, giving the final 
dataset, which was reduced to the total of 544 stations, wherein 
376 stations were used for training protocol and 168 for 
validation (Fig. 1). Elevation data and its derivatives were 
obtained from Shuttle Radar Topography Mission (SRTM) at 
100m resolution. Enclosed free access MODIS image, i.e. 
MOD11A2 Land Surface Temperature product with 1km 
resolution, was obtained from NASA’s Earth Observing 
System Data and Information System (EOSDIS). Publicly 
available 100m CORINE land cover map issued by European 
Environment Agency, was simplified to slightly modified 
Level 1 CORINE classification. 

All predictors were processed as raster grids and all were 
resampled to 4km resolution by Nearest Neighbor interpolation 
(original values of continual data are preserved). Preprocessing 
further included normalization of continual ordinal grids and 
splitting of nominal land cover grid into dummy variables 
(binary grids of each land cover class). Operative predictor 
dataset included 13 grids in total. Final preprocessing included 
converting grids to points, as the most suitable format for 
available software solution. SAGA GIS 2.0.8 was used for 
(pre)processing, evaluating and visualizing, while the SVMr 
experiments were placed in WEKA 3.7. 

III. PREDICTION AND EVALUATION METHOD 

The modeling method was based on the Support Vector 
Machine regression problem [4]. It implied learning the 
regression function y=f(x) at known training instances 
containing a reasonably small number of V(x,y) vectors 
containing {(x1, y1), (x2, y2),..., (xn, yn)} (where xi represents 
predictors and yi temperature values in this particular case) and 
expanding it to all remaining n instances given the consistent 
predictor dataset. The regression function is chosen as the best 
separating function within a given family of functions F. 
Particular version of used SVMr algorithm was epsilon-SVMr, 
with Radial Basis Function (RBF) kernel function 
implementation, which projects the original feature space to 
high-dimensional feature space. Basic epsilon-SVM regression 
implies linear form f(x)=wxi+b, where term w can be 
considered as the function’s sloping and b as its offset. To 
choose an optimal f(x) among Fs is to minimize a general risk 
function R(f), (1). 

 R(f)=0.5||w||
2
+cΣ(|yi-f(xi)|ε) (1)  α  + β  = χ. (1) (1) 

The loss function |y-f(x)|ε is controlled by the parameter ε, 
while c is the cost constant that trades-off between the margin 

width (2/||w||) and the number of misfits [12]. The optimization 
thus implies: 

 min(0.5||w||
2
+cΣ(ξi+ ξi

*
)), (2)  

subject to: 

 yi-f(xi)≤ ε+ ξi, i=1,...,n (3)  

 -yi+f(xi)≤ ε+ ξi
*
, i=1,...,n (4)  

 ξi+ ξi
*
≥0, i=1,...,n (5)  

where ξi are misfit slack variables. The problem comes 
down to introducing the Lagrangean multipliers and 
maximizing the term: 

 max(-0.5Σ(αi
*
-αi)(αj

*
-αj)(xi�xj)-εΣ(αi

*
+αi)+Σyi(αj

*
-αj) (6)  

subject to: 

 Σ(αj
*
-αj)=0; 0≤αj,αj

*
≤c. (7)  

The optimized regression function is now: 

 f(x)=(αj
*
-αj)(xi-xj)+b (8)  

Replacing the dot product in (8) with (9), i.e. applying the 
RBF kernel function, final regression function is obtained (10) 
[4]. The entire procedure requires introducing of three 
parameters: ε, c and γ. 

 K(xi�xj)=φ(xi)�φ(xj)=exp(-γ�||xi-xj||
2
) (9)  

 f(x)=(αj
*
-αj)exp(-γ�||xi-xj||

2
)+b (10) 

For evaluation of the resulting models (Fig. 2,3), i.e. for 
their performance measurement a simple Root Mean Square 
measure was used in the form: 

 RMSE=((Σ(yi-yi’)/yi)/k)
0.5

 (11) 

wherein yi is a temperature value measured at validating 
weather station and yi’ is predicted temperature value, while k 
represents the number of validating instances (k=168 in this 
case). 
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Fig. 2. Temperature prediction map using a complete set of predictors for 1.1.2011, with temperatures of validating weather stations (dots) given in °C 

 

 

 
Fig. 3. Temperature prediction map using filtered set of predictors for 1.1.2011, with temperatures of validating weather stations (dots) given in °C 
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Fig. 4. Optimization of SVMr parameters for given ε, c, γ combinations 

 

 
Fig. 5. Comparison of measured and predicted temperatures at 168 validation 

weather stations 

IV. RESULTS AND DISCUSSION 

The SVMr experiment was designed in the following 
fashion. From 544 available stations (containing the measured 
temperatures and values of 13 predictors) 376 training 
instances were randomly sampled, which makes about one 
third of the total, which is usually recommendable proportion 
[2]. Remaining third with 168 stations was reserved for 
validation. 

Initially it was necessary to optimize ε, c, γ parameters, 
which was performed by means of trial-and-error testing for 
selected combinations in 10-fold Cross-Validation protocol 
(Fig. 4). The selection has been narrowed on the basis of the 
best Root Mean Square Error result. The final parameter values 
ε=0.5, c=50, γ=2 were obtained after this fine tuning. 

The first experiment included the original dataset, with all 
13 predictors. The resulting model (Fig. 2) shows relatively 
good performance with RMSE of only ±2.096°C, which is 
concurrent to the other reported techniques, for instance 
geostatistical [5]. 

The second experiment involved the same procedure, but 
the number of parameters was reduced by implementing an 
attribute selection filter. Correlation Feature Selection (CFS) 

measure was used in combination with Best First search 
method. According to CFS the selected attributes are well 
correlated with dependent variable (temperature in this case) 
while they remain uncorrelated to other predictors. From 
original 13 predictors, the dataset was reduced to only 4 
including: longitude, MODIS image, land cover = Forested 
Area and land cover = Low Vegetation Area. Even reduced to 
such extent, this dataset have resulted in fair model, with 
RMSE of ±2.553°C. This result (Fig. 3) questions whether the 
additional spatial data, such as DTM derivatives are necessary, 
and also emphasizes the importance of the MODIS image and 
land cover, which have the most apparent significance for 
predictions. 

Comparison of obtained predictions from these two models 
and trends of their residuals (Fig. 5) suggest that the second 
model tends to slightly overestimate measured temperatures 
more than the first model. It is therefore arguable weather the 
attribute selection should be accepted in such cases. 

It can be speculated that various meteorological effects are 
yet to be included to improve the model. It is usually some 
remote phenomena that can govern the temperature trends, as 
previously indicated. However, it seems rather difficult to 
quantify these effects and include them in the dataset. It is also 
quite challenging to make long-term predictions with such 
unsteady data. 

V. CONCLUSIONS 

In this paper SVMr algorithm was applied in prediction of 
the peak daily air temperature for a single day (Fig. 2,3). The 
main experiment was concentrated on implementing of various 
predictors, including some less common spatial data. Another 
aspect was regarding possibilities of reducing the number of 
predictors to obtain equally or even better performing model. It 
is confirmed that MODIS satellite image and specific land 
cover classes are most influential on the air temperature 
prediction. With relatively low RMSE values in both cases 
(±2–2.5°C), it could be inferred that the SVMr regression is an 
efficient tool for predicting such meteorological measurements 
for short-term periods. It provides concurrent results to more 
commonly used interpolation methods. 

Research could be relatively easily extended by including 
predictions of other typical meteorological parameters in short-
term domain, i.e. for a single day or for an average in a few 
days period. Further research can be directed towards mid-term 
temperature prediction by using appropriate temporal data, but 
also involving remote or local phenomena and synoptic 
situations, which is suspected to be of a greater challenge. The 
latter particularly regards complex meteorological phenomena 
with highly variable values in short time span. 

The research also showed that precise meteorological maps 
can be obtained from publically available data (Remote 
Sensing and GIS datasets) and open source software. 
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Abstract—Classical geostatistical approaches for the modeling 

of spatial dependencies assume a Gaussian dependency structure. 

This assumption may simplify the modeling process, however it is 

not always met, when we face real world problems. We are going 

to introduce a new parametric R-vine copula based modeling 

approach, which is able to capture non-Gaussian spatial 

dependencies. R-vine copulas are a class of flexible multi-

dimensional probability distributions, composed out of bivariate 

copulas. For each of these bivariate building blocks we can 

choose among a variety of different dependency structures 

(copula families), which are well understood and easy to 

compute. The proposed "spatial R-vine model" combines the 

flexibility of vine copulas with the geostatistical idea of modeling 

spatial dependencies by means of the distances between the 

variable locations. To illustrate the model development process 

we consider daily mean temperature time series taken from 54 

monitoring stations across Germany. 

Keywords—daily mean temperature; spatial R-vine model; 

spatial statistics; vine copulas 

I.  INTRODUCTION 

The following is a summary of yet unpublished work [1]. 
Precise model formulations and results can be found there. 

The literature proposes different approaches for the 
modeling of spatial dependencies (see for instance [2], [3] and 
[4]). Most of these approaches assume and model Gaussian 
dependencies. However, multivariate Gaussian distributions 
are not suitable to model arbitrary data, since they are 
symmetric and unable to model extreme dependency. Thus, we 
apply so-called vine copula models (see [5], [6], [7], [8] and 
reference therein), designed to handle these shortcomings, i.e. 
to allow for flexible non-Gaussian dependency structures. 

We developed a new spatial dependency model relying on a 
reparametrization of an R-vine copula model, exploiting the 
relation between the vine copula parameters and the available 
spatial information. Different model specifications based on 
distances and elevation differences can be envisioned. 
Maximum likelihood estimation and a model based prediction 

method are available. Our approach is developed, based on 
daily mean temperature time series originating from 54 
monitoring stations across Germany, collected over the period 
01/01/2010-12/31/2012 by the German Meteorological Service 
(Deutscher Wetterdienst). 

Reference [9] is a further spatio-temporal modeling 
approach using vine copulas. It combines copulas and 
geostatistical methods for the modeling of spatial dependencies 
in the first vine copula trees. On the contrary, our R-vine based 
approach models the spatial dependencies in all vine copula 
trees and allows including spatial covariates other than 
distance. 

II. DEPENDENCY MODELING USING VINE COPULAS 

Copulas in general are d-dimensional distribution functions 
living on the unit hypercube [0,1]d. The respective marginal 
distributions are uniform distributions on [0,1]. A copula C is a 
tie between a multivariate distribution function F and its 
marginals (F1,…,Fd) that captures all dependency information 
(see [10]). It holds F(y)=C(F1(y

1
),…,Fd(y

d
)), where 

y=(y1
,…,y

d)’ is the realization of a random vector Y. 

Regular vine (R-vine) copulas are multivariate copulas 
composed out of bivariate copulas only, which are well 
understood and easy to compute (see [11], [12] and [13]). The 
needed bivariate building blocks generated by conditioning, are 
identified through a set of nested trees (in a graph theoretical 
sense), which is called R-vine tree structure. Here the bivariate 
copulas are also called pair-copulas. They can be selected 
among the many different, parametric, bivariate copula types, 
which feature different kinds of dependency structures. 

In the case of the data set addressed above (d=54) we are 
interested in the 54-dimensional copula representing the spatial 
dependencies between the temperatures of the 54 monitoring 
stations. Marginal distributions corresponding to all 54 stations, 
which need to capture seasonality effects and temporal 
dependencies of the time series, are modeled. For further 
investigations, an ordinary R-vine is fitted to the data using the 
Dißmann algorithm [13]. This includes the sequential selection 
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of an R-vine tree structure and adequate, parametric copula 
families for the bivariate building blocks. 

III. SPATIAL R-VINE MODEL 

For high dimensions, ordinary R-vine copula models 
become computationally impracticable, because the amount of 
parameters increases quadratic. Our new approach, the spatial 
R-vine copula model (SV) allows to reduce the needed number 
of parameters significantly, by exploiting the available spatial 
information. 

For the R-vine copula, let us consider only parametric pair-
copulas with at most two parameters. For the first parameters 
of these bivariate copulas, there are copula-family-dependent 
functional relationships to the well-known rank correlation 
measure Kendall’s tau, which measures the association of two 
variables. Since we expect comparatively strong spatial 
association between nearby monitoring stations, we 
investigated a possible relationship between the Kendall’s tau 
estimates occurring in the R-vine copula fitted to the 
temperature data and respective station distances and elevation 
differences. We detected a strong linear relation of the Fisher-z 
transformed Kendall’s tau estimates on the logarithmized 
station distances and some linear relation on the elevation 
differences. The only two-parametric copula family we 
considered was the bivariate Student-t copula, which was 
chosen for a large share of the modeled pairs of the R-vine 
copula fitted to the data. In this case, the second copula 
parameter corresponds to the degrees of freedom of the 
Student-t copula. We discovered a quadratic trend of the 
logarithmized estimated degrees of freedom with respect to the 
R-vine tree number. 

We use our previous findings to parametrize all pair-
copulas of each R-vine copula tree jointly. In the case of the 
data set under consideration (d=54), the first R-vine tree 
models bivariate dependencies between 53 station pairs. This 
means that the original R-vine requires 53 first copula 
parameters for this tree. Exploiting for instance the above-
detected relationship of these parameters on the station 
distance, all of these parameters can be replaced by a copula-
family dependent transformation of a linear term involving an 
intercept parameter and a further parameter for the 
logarithmized station distance. Thus, 53 parameters could be 
replaced by only two parameters, by using the dependency 
information captured by the station distances. 

The parameters in the higher R-vine trees are replaced in a 
similar fashion. Due to the nested structure of the R-vine trees, 
the pairs modeled in higher trees depend on the structure of the 
lower trees. Thus, one could additionally consider covariates 
(e.g. distances, elevation differences) for the regression 
formula of the copula parameters, which are indicated by the 
conditioning on the previous R-vine trees. 

In contrast, the second copula parameters are modeled 
jointly for all R-vine trees. They are replaced by the 
exponential of a quadratric polynomial of the tree number, i.e. 
all occurring second copula parameters are replaced by only 
three parameters. 

Since the model is specified through nesting, error 
propagation is minimized when strongest dependencies are 
modeled first (see the Dißmann algorithm [13]). For that reason 
it is common in practice to consider so called truncated R-
vines. This means that after a certain R-vine tree, all pair-
copulas of the higher trees are considered to be independence 
copulas, which reflect conditional independencies and do not 
involve any parameter. This allows to reduce the needed 
number of parameters further, but also leads to a slight, maybe 
negligible decrease in model accuracy compared to the full R-
vine copula. 

To summarize, a spatial R-vine copula is a truncated R-vine 
copula where the parameters are regressed on available spatial 
covariates capturing spatial dependency information. 

In order to estimate the parameters of a spatial R-vine 
copula model we apply maximum-likelihood estimation. The 
likelihood that has to be maximized is a product of the 
parametric, family-dependent copula densities occurring in the 
truncated R-vine. The original pair-copula parameters are 
determined through common regression parameters 
corresponding to spatial distances and elevation differences, as 
described above. 

For the purpose of prediction from a spatial R-vine model 
at an unobserved location, the modeled spatial R-vine has to be 
extended by one dimension. This is achieved by adding a 
further variable as a leaf to the first R-vine tree and adjusting 
the higher order trees accordingly. The new tree edges are 
selected such that the respective Kendall’s tau estimates, 
estimated based on the tree-dependent model specification 
chosen above, are maximized. For the new pair copulas, 
families are selected based on the number of occurrences of 
each family in the R-vine copula. The parameters are 
calculated using the above model specification and based on 
the spatial information indicated by the (relative) location from 
which to predict. This results in a (d+1)-dimensional copula 
distribution which allows prediction of the variable 
corresponding to the unobserved location, given the variables 
composing the original data set. Hence, the prediction uses the 
available information for all locations of the data set to predict 
at a new location. 

IV. CONCLUSIONS 

Investigations of an R-vine copula fitted to temperature 
time series observed at 54 locations across Germany led to a 
new spatial dependency model, the spatial R-vine model. An 
extensive analysis of the relationship between the Kendall's tau 
estimates occurring in the R-vine copula and the respective 
distances and elevation differences propose tree-wise model 
specifications for the first pair-copula parameters. This allows 
to reduce the necessary number of parameters immensely. It 
shows that the station distances are able to explain the spatial 
dependencies to a large extent. The described model 
specification for the second pair-copula parameters reduces the 
number of parameters further. Utilization of different, non-
Gaussian copulas as bivariate building blocks of an R-vine 
copula distinguishes our spatial R-vine model from classical 
Gaussian approaches to model spatial dependencies. 
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For the investigated temperature data set, our modeling 
approach led to a distinct reduction in the number of 
parameters. In the original (truncated) R-vine copula 733 
parameters were needed. This number was reduced to 41 for 
the selected spatial R-vine model, which is also mirrored in the 
computation time of the parameter estimation for both models. 
The joint maximum likelihood estimation procedure took about 
3.7 days for the R-vine copula. In comparison, 18 hours were 
needed in the case of the spatial R-vine model. 

In [1] we compare our spatial R-vine model to a classical 
Gaussian approach of spatial dependency modeling. Prediction 
results are compared and evaluated based on a validation data 
set. For the purpose of comparison continuous ranked 
probability scores (see [14]) were calculated. These scores 
yield reasonable accuracy of our predictions. Examination of 
the scores over time show a time variation of the relative 
prediction performance of both models. Overall consideration 
of the scores and a comparison in terms of AIC and BIC yield 
preference of our spatial R-vine model. 

Our modeling approach can also be applied to other types 
of meteorological data like precipitation, wind speed, cloud 
cover or air pressure. Also an extension of our modeling 
approach by including further or different covariates is 
possible. 
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Abstract — Rainfall is the key element in regional water 

balance, and has direct influence over economic activity. There is 

increasing interest of climatic and meteorological data in large 

spatial and temporal scale. Likewise, computational methods and 

techniques for climatic and meteorological estimates in large 

areas with small dataset are growing. Thus, we evaluated neural 

network performance for rainfall estimates over Mato Grosso 

State located in the Brazilian Midwest region. The technique of 

neural network allows the algorithm identifies patterns in the 

data series, allowing estimates to make new datasets. In this 

preliminary study, a dataset obtained from 12 meteorological 

stations was used to train the neural network and then it was run 

to perform estimates, which allowed comparing with TRMM 

satellite estimates. We chose TRMM satellite estimates because it 

has estimated appropriately the annual accumulated rainfall in 

the Brazilian Midwest region. In general, there was an 

overestimation of total rainfall estimates by neural network of 

21.9% in January and 26,219% in September for the year 2010. 

The higher overestimated rainfall values in January occurred in 

Pantanal (39.5%) and Amazon forest (25.4%) than in Cerrado 

(14%); while the higher overestimated values in September 

occurred in Cerrado (31,225%) and Amazon forest (25,645%) 

than in Pantanal (1,424%). The rainfall estimates by neural 

network had better performance in January (wet season) than in 

September (dry season) which means that neural network was 

weak to predict lack of rainfall probably due to use just latitude 

and longitude as auxiliary variables. The better performance of 

rainfall estimates by neural network was in the Brazilian 

Savanna in January than in Amazon forest and Pantanal. Bad 

estimates of rainfall using neural network in Mato Grosso state 

were due to (i) a short temporal dataset, (ii) few stations with 

poor spatial variability, (iii) few auxiliary variables to build 

neural network. The next step will be to analyze the rainfall and 

other climatic estimates for the whole year for several years on 

the Midwest region of Brazil by neural network including other 

auxiliary variables besides latitude and longitude or by other 

computational frameworks developed by DailyMeteo group. 

Keywords —spatio-temporal dynamics, satellite observations, 

artificial intelligence, precipitation, Cerrado. 

I.  INTRODUCTION 

The rainfall is the most influential meteorological element 
[1] with a direct effect on the water balance and an indirect 
effect on relative humidity, air and soil temperature, which 
affect plant growth and human development [2]. The annually 
amount and distribution of rainfall determine the natural 
vegetation type and agricultural exploitation mode in a region 
[3]. This characterization allows better planning of agricultural 
practices, soil conservation structures (contour lines and 
terraces), constructions (channel drains and dams), and 
weather forecasts [4]. 

Economy based on agribusiness involving production 
chain of agricultural and cattle raising can be directly 
influenced by the excess or lack of rainfall causing partial and 
total losses such as in the economy of Mato Grosso state in 
Brazil [1]. These effects on agribusiness have caused an 
increasing demand about climatic and meteorological data in 
large spatial and temporal scales. Analyses of pluviometric 
regime demand long data series [5] what can be obtained by 
remote sensing [6] and computational techniques. 

Remote sensing and computational techniques are 
advantageous because they allow the monitoring on a regional 
scale the energy partitioning, carbon and water cycle with low 
operating costs and greater data acquisition [7], [8], [9]. It has 
become powerful tools for obtaining information from natural 
resources management such as water, soil and vegetation [10]. 
Several methodologies have been proposed for rainfall 
estimation using satellite images such as TRMM (Tropical 
Rainfall Measuring Mission satellite) and neural network. 

TRMM as a remote sensing technique with the specific 
purpose of measuring rainfall in the tropics [11] is been used 
to investigate pluviometric regime dynamics for many 
purposes such as: assessing the spatiotemporal dynamics of 
two sub-regions of the Pantanal [12], studying daily variability 
of rainfall in the Amazon basin [13], evaluate the vegetation 
response in northeastern Brazil [14], identifying warm season 
in urban regions of some cities in USA [15], and investigate 
flooding causes in a city in south Brazil [16]. Rainfall 
estimated by TRMM was validated over the Ethiopian 
highlands [17] and the Midwest region of Brazil [18]. 
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A neural network model is a mathematical construct whose 
architecture is essentially analogous to the human brain, which 
is represented by the network topology and pattern of 
connections between the nodes, its method of determining the 
connection weights, and the activation functions that it 
employs [19], [20], [21].  

Nevertheless, the interest in artificial neural networks 
(ANNs) is nowadays increasing because of their high potential 
for complex, non-linear and time-varying input–output 
mapping [19]. Recently, artificial neural networks have been 
applied in meteorological and agro ecological modeling and 
applications [22]. Kumar et al. [23] applied neural networks 
for estimation of daily evapotranspiration and compared the 
performance neural networks with Penman–Monteith method. 
Most of the applications reported in literature concern 
estimation, prediction and classification problems [20]. 

Therefore, computational techniques and remote sensing 
for climatic and meteorological estimates in large areas with 
small dataset are growing around the world. Thus, the 
objective of this paper was to evaluate neural network 
performance for rainfall estimates over Mato Grosso State, 

Brazil. 

Fig. 1. Location of Mato Grosso state, Brazil. 

II. MATERIAL AND METHODS 

A. Study area 

Mato Grosso is one of the Brazilian states, the third largest 
by area, located in the western part (latitude from 7º to 18º S 
and longitude from 50º to 62º W) of the country (Figure 1). A 
state with a flat landscape, alternating plateaus and plain areas, 
which presents three different ecosystems: Amazon 
Rainforest, Brazilian Savanna (Cerrado) and the Pantanal 
(wetland) [24]. The climate is classified as Aw, according to 
Köppen [25], with a dry season from May to September and a 
wet season from October to April [18], [26]. The annual 
temperature average ranges from 23°C to 26.8°C and the 
annual rainfall average ranges from 1,200 to 2,000 mm [25]. 
Mato Grosso contributes to form three basins: Paraguay 

(176,800.60 km
2
); Amazon (592,382.54 km

2
) and Tocantins 

(132,237.56 km
2
) [27]. 

Fig. 2. Location of random points (TRMM) in Mato Grosso state, Brazil. 

B. Meteorological data 

Rainfall data were obtained from 12 meteorological 
stations (Figure 1 and Table 1) provided by the ‘Instituto de 
Controle de Espaço Aéreo’ (ICEA) of ‘Comando da Força 
Aérea’ available on the website 
[http://clima.icea.gov.br/clima/] and TRMM satellite provided 
by Distributed Active Archive System (DAAC) available on 
the website 
[http://disc2.nascom.nasa.gov/Giovanni/tovas/TRMM].There 
were 02 meteorological stations in Amazon forest, 08 in 
Cerrado and 02 in Pantanal. The pixel size of TRMM is 
25 km². We used data from 3B43 V6 products. We chose 
TRMM satellite estimates because it has estimated 
appropriately the annual accumulated rainfall in the Brazilian 
Midwest region [18]. 

Table 1 – Characterization of meteorological stations in Mato 
Grosso state, Brazil. y = longitude. x = latitude. PN = 
Pantanal. CE = Cerrado. AF = Amazon forest. 

Stations Biome y x Altitude (m) 

Cáceres PN -57.68 -16.05 118 

Canarana CE -52.27 -13.47 430 

Cuiabá CE -56.1 -15.61 145 

Diamantino CE -56.45 -14.4 286 

Gleba Celeste AF -55.29 -12.28 415 

Matupá AF -54.91 -10.25 285 

Nova Xavantina CE -52.35 -14.7 316 

Padre Ricardo Remetter PN -56.06 -15.78 140 

Poxoréu CE -54.38 -15.83 450 

Rondonópolis CE -54.56 -16.45 284 

São José do Rio Claro CE -56.71 -13.43 350 

São Vicente CE -55.41 -15.81 800 
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C. Artificial neural network 

The dataset of 12 meteorological stations were used to 
train the neural network and then was run to perform estimates 
which allowed comparing with TRMM satellite estimates. The 
input dataset contained 360 ground measurements of daily 
accumulated rainfall for January (wet season) and 372 
September (dry season) for year 2010. Rainfall estimates were 
performed by neural network as a function of latitude and 
longitude. We generated 1158 random points and extracted 
rainfall values from TRMM dataset to compare with the neural 
network estimates (Figure 2). 

D. Statistical analysis 

The evaluation of rainfall estimates from neural network 
data in relation to TRMM data was performed by these 
statistical indices: accuracy of Willmott index "d" (eq. 1), root 
mean square error "RMSE" (eq. 2), mean absolute error 
"MAE" (eq. 3), and Spearman’s Rank correlation “r” (eq. 4). 

The accuracy is related to the distance of the estimated 
values from those observed. Mathematically, this 
approximation is widely applied to the comparison between 
models [28]. Their values range from the value of 0, 
representing no agreement, to value of 1 representing perfect 
agreement. 

� = 1 − ����	 − 
	 �2 ��|�	 − 
| + |
	 − 
|�2� �� ����

 
 

where Pi is the estimated value, Oi the value observed and O 
the average of observed values. 

The RMSE indicates how the model fails to estimate the 
variability in the measurements around the mean and measures 
the change in the estimated values around the measured values 
[29]. The lowest threshold of RMSE is 0, which means there is 
complete adhesion between the TRMM estimates and 
measurements. 
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The MAE indicates the mean absolute distance (deviation) 
of values estimated from the values measured. The MAE and 
RMSE values should be close to zero [29]. 
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Spearman’s Rank correlation coefficient is used to identify 
and test the strength of a relationship between two sets of data 
[30]. 
�

� = 1 − 6 ∑ �2
� ��2 − 1�� ����

  

where di = xi – yi is the difference in the ranks given to the 
two variable values for each item of data. 

III. RESULTS AND DISCUSSION 

Rainfall ground measurements were higher in January than 
in September (Table 2), following the seasonal trends of the 
region [18]. There was a geographical pattern of rainfall from 

higher to lower values from North to South in January (Figure 
3) in Mato Grosso state [18], [31]. However, neural network 
estimates captured a small amount of the rainfall pattern over 
Mato Grosso state (Figure 4). 

 

Fig. 3. Rainfall map using TRMM estimates in Mato Grosso state, Brazil. 

 

Fig. 4. Rainfall map using neural network estimates in Mato Grosso state, 

Brazil. 

In general, there was an overestimation of total rainfall 
estimates by neural network of 21.9% in January and 26,219% 
in September for the year 2010 (Table 2). The higher 
overestimated rainfall values in January occurred in Pantanal 
(39.5%) and Amazon forest (25.4%) than in Cerrado (14%); 
while the higher overestimated values in September occurred 
in Cerrado (31,225%) and Amazon forest (25,645%) than in 
Pantanal (1,424%). 

Table 2 – Spatial and temporal variability of rainfall estimates 
by meteorological stations, TRMM and neural network in 
Mato Grosso state, Brazil. MS = Meteorological Stations. NN 
= Neural Network. AF = Amazon forest. CE = Cerrado. PN = 
Pantanal. 

 

MS (mm) TRMM (mm) NN (mm) 

Jan Sep Jan Sep Jan Sep 

Total 345.33 11.45 368.25 20.14 436.85 386.51 

AF 376.15 36.35 398.70 24.92 482.28 401.64 

CE 346.90 5.92 354.01 13.97 401.58 378.41 

PN 308.25 8.65 214.23 24.92 286.97 401.64 

The rainfall estimates by neural network had better 
performance in January (wet season) than in September (dry 
season) (Table 3). The neural network was weak to predict 
lack of rainfall probably due to use just latitude and longitude 
as auxiliary variables. The better performance of rainfall 
estimates by neural network was in the Brazilian Savanna in 
January than in Amazon forest and Pantanal. 
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Table 3 – Statistical performance of neural network for 
estimating rainfall in Mato Grosso state, Brazil. total = values 
including all biomes. AF = Amazon forest. CE = Cerrado. PN 
= Pantanal. 

RMSE d MAE r 

Jan_total 124.47 0.67 103.70 0.55 

Set_total 404.68 0.06 369.55 0.10 

Jan_AF 141.19 0.47 120.97 0.20 

Set_AF 418.22 0.08 379.58 0.16 

Jan_CE 102.65 0.74 85.16 0.68 

Set_CE 401.63 0.03 368.60 -0.12 

Jan_PN 97.03 0.32 75.92 -0.16 

Set_PN 418.22 0.08 379.58 0.16 

Neural network has obtained good estimates of 
meteorological and climatological variables in several studies. 
Hijmans et al. [32] obtained good estimates of monthly total 
precipitation, monthly mean, minimum and maximum 
temperature using latitude, longitude, and elevation as 
auxiliary variables in neural networks. Dibike and Coulibaly 
[19] also obtained good estimates using temporal neural 
network as method for downscaling both daily precipitation as 
well as daily maximum and minimum temperature series. 
Antonic et al. [33] obtained good results for modelling seven 
climatic variables using neural network with elevation, 
latitude, longitude, month and time series of respective 
climatic variable observed at two weather stations as auxiliary 
variables. 

Despite the great popularity of the neural network models 
in many fields, Hsieh and Tang [34] showed three obstacles to 
adapting the neural network method to meteorology and 
oceanography, especially in large-scale with low-frequency 
studies due to (a) nonlinear instability with short data records 
and (b) large spatial data fields. 

IV. CONSIDERATION 

In general, we obtained bad rainfall estimates using neural 
network in Mato Grosso state due to (i) a short temporal 
dataset, (ii) few stations with poor spatial variability, and (iii) 
few auxiliary variables to build neural network. 

The next step will be to analyze the rainfall and other 
climatic estimates for the whole year for several years on the 
Midwest region of Brazil by neural network including other 
auxiliary variables besides latitude and longitude or by other 
computational frameworks developed by DailyMeteo group. 
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Abstract—Commercial cellular communication networks 

have been recently used in country-wide rainfall-map retrievals. 

Rainfall is the main source of attenuation in the electromagnetic 

signals that travel from one telephone tower to another, across 

the network. If the received power is measured at one end of a 

microwave link, the path-averaged rainfall intensity can be 

retrieved. The use of microwave link networks is a step further in 

the run for accurate rainfall estimates, given the large amount of 

information they can potentially collect. 

 

The aim of this work is to identify and quantify the sources of 

uncertainty present in rainfall maps retrieved from commercial 

microwave link networks. We used rainfall estimates, from 

microwave link data, to interpolate rainfall maps for the entire 

land surface of The Netherlands. These interpolated rainfall 

maps were compared to gauge-adjusted actual rainfall fields 

considered as ground-truth; thus, the uncertainties could be 

quantified. The Ordinary-Kriging (OK) was the methodology to 

interpolate the rainfall maps.  

 

We based our uncertainty analysis in four features that 

mainly define the applicability of commercial microwave link 

networks in rainfall-map retrievals: the spatial density of the 

network; the time availability of the microwave link data (or 

attenuation measurements); the interpolation methodology; and 

the intrinsic aspects proper of the measurement process (for 

instance, wet antenna effect, sampling interval of the 

measurements, wet/dry period classification, drop size 

distribution, multi-path propagation). The results showed that it 

is more important to have continuous registries of microwave 

link data than a microwave link network with higher degree of 

spatial density. 

Keywords—rainfall maps; commercial cellular networks; 

microwave links;  uncertainty; ordinary kriging 
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Abstract— Precipitation data are measured at certain places, 

often quite distanced. Values between the places can be predicted 

using geostatistical tools like kriging, for which the interpolated 

values are modeled by a Gaussian process. In this paper we 

discuss an alternative method, i.e. using Machine learning 

techniques (Multilayer perceptron, linear regression and Support 

Vector Regression) to predict precipitation values. For the case 

study, average annual values of precipitation for a 30-year period 

in Serbia, three models were created based on attributes related 

to location data, spatial pattern, distance from nearby sea and 

data of nearest points (gauges). The best results were obtained by 

using Support Vector Regression and Linear Regression, 

indicating the linear nature of the problem. Finally, we have 

compared the output from kriging prediction and the output 

obtained by using Machine Learning techniques.  

Keywords—Precipitation, Machine Learning Techniques, 

Linear Regression, Support Vector Regression 

I.  INTRODUCTION 

Precipitation data are important to many problems in 
hydrologic analysis and designs. For example the ability of 
obtaining high resolution estimates of flow accumulations or 
floods depends on accurate and high resolution precipitation 
data. The accurate estimation of the spatial distribution of 
precipitation data requires a very dense network of measured 
places (gauges), resulting in high installation and operational 
costs. Hence, it is necessary to estimate the precipitation at 
unrecorded locations from values at measured sites.  

A number of methods have been proposed for the 
interpolation of precipitation data. The simplest approach 
consists of assigning to the unrecorded location the 
precipitation value of the closest measured site [1]. This 
method creates around each measured location a polygon of 
influence with the boundaries at a distance halfway between 
rain gauge pairs, i.e. Thiessen polygons. Another method 
which can be used estimates values as a weighted average of 
surrounding values, the weights being reciprocal to the square 
distances from the unsampled location [2]. Like the Thiessen 
polygon method, the inverse square distance (IDW) technique 
is simple method and it does not allow considering factors 
such as topography, which can improve the accuracy of 

estimation. Interpolators such as those above are commonly 
included in GIS packages and have been applied to the 
interpolation of precipitation data from point-based station 
records. 

The second group of methods consists of algorithms that 
combine precipitation data with digital elevation model 
(DEM) like linear regression and geostatistical methods such 
as simple kriging with varying local mean (SKlm) and kriging 
with external drift (KED) and collocated ordinary cokriging. 
All geostatistical algorithms provide better predictions than 
the methods that ignore the pattern of spatial dependency 
(Thiessen polygons and IDW) [3]. Bajat et al. [3] used 
regression kriging for mapping average annual precipitation in 
Serbia. Obtained results show that the prediction of average 
annual precipitation by regression kriging is a robust 
technique. Geostatistical tools are used not only for spatial 
prediction of climatologic variables but also for mapping 
detected trends in climatologic changes during certain time 
intervals [4] [5]. 

There is no doubt that geostatistical methods such as 
kriging have been useful for climate surface interpolation 
(including precipitation data) especially when elevation data is 
included in the interpolation [6]. However, lately some other 
prediction methods, like machine learning techniques, have 
been introduced in spatial prediction and modeling of climate 
variables [3] [7]. For example, Bryan and Adams [7] used 
resilient backpropagation artificial neural networks (ANN) to 
interpolate mean annual precipitation and surface temperature 
for China. Target variables were represented on the basis of 
nonlinear relationships of latitude, longitude, and terrain 
elevation. Also Hong [8] used machine learning techniques for 
rainfall forecasting.  

The procedure of modeling average annual precipitation 
over a 30-year period by machine learning techniques is 
presented in this paper. For mapping average annual 
precipitation three machine learning techniques were used: 
Multilayer Perceptrons (MP) as an artificial neural network 
[11], Multiple Linear Regression (MLR) [9] [12] and Support 
Vector Regression (SVR) [10] [13]. Besides the usual data 
such as precipitation and location of rain gauge stations 
(northing, easting, and altitude), which are nowadays 
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Fig.  2. DEM of Serbia 

 
Fig.  1. Finding а good model 

customary deliverable, we calculated 19 more attributes 
describing each measured place. Finally, we compared the 
results of machine learning tools with the kriging result 
obtained by Bajat et al. [3].  

The structure of the paper is as follows: “Materials and 
methods” section contains a brief description of theoretical 
foundations of machine learning techniques. In addition to this 
section, the description of used rain gauge meteorological data 
is given. “Results and comments” section provides details 
about explanatory data analyses and spatial data modeling and 
mapping by machine learning techniques. “Conclusions” 
section concludes the paper. 
 

II.  MATERIALS AND METHODS 

A. Machine learning techniques for precipitation prediction 

The main objective of the research was to examine the 
usage of machine learning (ML) techniques to build a 
predictive model for average annual precipitation in Serbia 
during the period of 1961 – 1990.  Using available 
measurements from a network of precipitation gauge stations, 
the model should be capable to predict the average annual 
precipitation in any desirable location. The problem is 
formulated as follows: given a location x=<x1,x2,…xn> ∈ Rn 
one tries to find a function f  which maps a location into 
related precipitation: f: x→p, where p∈R.  Each xi represents a 
real valued attribute describing the associated location such 
the altitude or the distance from the nearby sea. ML 
techniques learn the mapping f by using a set of locations in 
which all attributes and precipitation are known in advance. 
This set is referred as a training set and each member of the 

set is a pair <xi, pi>, i=1, 2, … N, where N is the number of 
elements (gauge stations) in a training set. To train a 
predictive model f from the training set one uses techniques 
such as MP [11] or SVR [10][13].  

ML techniques use different approaches to find the 
appropriate f = f(x, w) where w = <w1, w2, ….wk> ∈ Rk 

represent model parameters. All techniques share similar ideas 
of finding the best model parameters w* that decrease the 
values of error function E(w) = E(f(x) - ptrue)  on a training set 
while retaining the simplicity of the model. If one tries to 
minimize the error function on a training set this could lead to 
overfitting when a model perfectly predicts training values but 
fails to predict unknown values on a separate data (Fig.  1). In 
general, best models were built when one uses sufficient, 
quality data in which the examples (locations) are represented 
with carefully selected attributes that convey enough 
information for the underlying prediction task.  

B. Study Area 

The study area occupies the territory of Serbia located at 
the crossroads between Central and Southern Europe. It 
comprises around 18 % of Balkan Peninsula, covering an area 
of 88,361 km2. Serbia is a country of diverse topography (Fig.  
2). The northern part of the country is completely located 

within the Pannonian Plain. Four mountain systems cross the 
country: the Dinaric Alps (in the western part of the country), 
the Carpathian Mountains (along the eastern part of Serbia), 
Balkan Mountain (eastern border of the country), and the 
Rhodope Mountains (on the southeast). The country varies in 
altitude from 29 m near the border between Serbia, Romania, 
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Fig.  3. The histogram of average annual precipitation in Serbia (1961 - 

1990) 
 

and Bulgaria to 2,656 m on Prokletije Mountain (on the 
south). 

There are three main types of climate in Serbia: 
continental, moderate-continental, and modified 
Mediterranean climate. Geographic location and topography 
are key factors in formation of different types of climate. The 
north of the country is characterized by typical continental 
climate with air masses coming mainly from northwest Europe 
[14]. The south and southwest of the country is subjected to 
Mediterranean influences. The amount of precipitation 
increases with altitude from north to south. The northern parts 
receive less than 600 mm of annual precipitation; towards the 
south, it rises to 1,000 mm annually, while some mountains 
summits in the southwest receive over 1,000 mm per year. 
Most part of the country has the continental precipitation 
regime with maximum precipitation in June or May and 
minimum in February or October. Due to Mediterranean 
influence, southwestern Serbia has the Mediterranean 
precipitation regime, with maximum during winter months 
and minimum in August. 

C. Precipitation Dataset 

Two separate datasets were used in this study. The first set 
is related to rain gauge stations, their spatial coordinates 
(northing, easting, and altitudes) and associated average 
annual precipitation values. The second set represents publicly 
available digital elevation model used to improve the basic 

data representation of the first set. 

The first dataset included mean annual precipitation data 
from 1,014 meteorological stations in Serbia provided by the 
Hydro-Meteorological Service of Serbia. The data come from 
31 main stations, 99 climatological stations, and 885 
precipitation stations. Since almost all weather stations in 

Serbia were used in this research, the precipitation data are 
very well spatially distributed. At altitudes 0–500m (62% of 
the whole area), there are 66.1% of all weather stations. From 
500 to 1,000m (27% of the whole area), there are 23.4% of all 
stations. At altitudes higher than 1,000m (11.2% of the whole 
area), there are 10.9% of the stations. The data covers the 
period of 1961–1990 and are quality controlled in terms of 
correction of misprints and relocation of the stations. The 
histogram of average annual precipitation (Fig.  3) points to a 
skewed distribution with mean value of 739mm. 

For the purpose of this study, we used DEM of 1km 
resolution produced from GDEM global model (Version 1) of 
Earth’s surface, published in the year of 2009 
(http://asterweb.jpl.nasa.gov/gdem-wist.asp). 

D. Data representation 

In this research each of 1014 locations is represented as a 
real vector xi with 22 coordinates (attributes) given in TABLE 
I.  and an associated precipitation pi.  

TABLE I.  USED ATTRIBUTES 

Attribute Description Group 

x1 Easting 

1 x2 Northing 

x3 Altitude 

x4 Distance to high mountains 

2 

x5 Distance to medium-sized mountains 

x6 Distance to low mountains 

x7 Direction toward high mountains 

x8 Direction toward medium-sized mountains 

x9 Direction toward low mountains 

x10 Distance from the Adriatic Sea 3 

x11, x12, x13 Distance to 1st, 2nd and 3rd Nearest Point 

4 
x14, x15, x16 

Direction toward 1st, 2nd and 3rd Nearest 
Point 

x17, x18, x19 Altitude of 1st, 2nd and 3rd Nearest Point 

x20, x21, x22 
Precipitation at 1st, 2nd and 3rd Nearest 
Point 

First group of attributes represent spatial information of 
locations. Since combining precipitation data with digital 
elevation model (DEM) gives better prediction than using just 
precipitation data [3], altitude was added into this group.  

Smith [15] gives a comprehensive review on the complex 
subject of orographic rain. On the windward side, forced 
lifting of approaching air masses causes the release of rainfall 
and an increase in precipitation with elevation [16]. 
Depending on the mountain size and the efficiency of the 
release processes, precipitation will decrease on the leeward 
side. Mountains may also facilitate the formation of 
convective rainfall [15]. Therefore, in this research we used 
six attributes which are based on a topography pattern, e.g. 
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Fig.  4. Residuals on test gauges 

mountains. Three types of mountains were extruded from 
DEM: high mountains – over 2000 m, medium-sized 
mountains – from 1000 m to 2000 m and low mountains – 
from 500 m to 1000 m. Based on these data, attributes in 
group 2 were calculated by using GIS tools.  

According to water cycle, which describes the continuous 
movement of water, water moves from one aggregate state to 
another, such as from oceans and seas to the atmosphere, and 
then it falls to Earth’s surface as precipitation. Therefore, we 
used Euclidian distance from the Adriatic Sea as an attribute 
(group 3). 

 Geostatistical methods such as regression kriging are based 
on spatial dependency. Within the kriging algorithm 
variogram function is used for describing the spatial 
dependence degree of a spatial random field or stochastic 
process. Bajat et al. [3] created variogram function for 
precipitation data in Serbia and it clearly shows that if a point 
pair is closer the dependence degree is higher. To include this 
behavior into our mapping model we calculated 12 more 
attributes based on precipitation and location data of three 
nearest points (group 4). 

E. Evaluation of model performance 

In order to determine which ML technique (MP, LR, and 
SVR) produces the best prediction model it is crucial to apply 
the correct evaluation protocol. For that purpose five train-test 
splits were randomly created using 1014 gauge stations. In 
each train-test split locations were distributed uniformly over 
the case study area with 811 locations in the train and 203 
locations in the test part. After building a model on a train part 
its performance was evaluated on a test part using standard 
measures: correlation coefficient, absolute mean error and root 

mean squared error. Final evaluation was performed after 
averaging the results for each train-test split.    

When building a model in each split one must find the 
appropriate parameters for each applied technique (i.e. C for 
SVR or number of neurons in a hidden layer for MP). The 
number of parameter combinations for each technique is 
infinite. Therefore, we selected few reasonable parameter 
combinations for each technique and found the best 
combination (model) using the 5-fold cross validation [9] on 
each training set.   

III. RESULTS AND COMMENTS 
 
After building models with optimal parameters and 

applying prediction at gauges in test sets the results are 
presented in TABLE II.  

TABLE II.  SUMMARY STATISTIC OF PREDICTION ERRORS 

Machine Learning 

Technique 
Correlation MAE RMSE 

Multilayer Perceptron 
(MP) 

0.87 59.76 85.33 

Linear Regression 
(MLR) 

0.89 49.04 74.39 

Support Vector Reg. 
(SVR) 

0.88 50.41 75.23 

 
MLR and SVR produced similar results, while MP 

appeared to be the inferior model. 

 Fig.  4 shows residual values between input and modeled 
precipitation at gauge test stations. The spatial pattern of 
residuals indicates their random distribution. Compared to 
DEM, it is notable that residuals are highly dependent on 

altitude. Each of the three trained models causes higher 
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Fig.  5. Differences between trained models and regression kriging 

 
Fig.  6. Average annual precipitation map obtained by Support Vector 

Regression 

negative residuals (underestimate precipitation value - red 
bubbles) than positive residuals (overestimate - green 
bubbles). As expected, the highest residual values are located 
in Prokletije mountain area closed to the Albanian border. 
Also, residuals are higher in south and west Serbia than in 
north part of the country. It is evident that all three models 
make similar errors in the same parts of the country.  

Based on trained models three maps of the mean annual 
precipitation for Serbia were produced and compared to the 
reference map obtained by kriging regression (study by Bajat 
et al. [3]) which is assumed to be more accurate. The smallest 
difference, compared to the reference map, was produced by 
SVR (TABLE III. ) while MLR produced slightly bigger 
difference. According to the mean value of differences and 
standard deviation MP had the biggest difference. 

TABLE III.  STASTISTICS OF DIFFERENCES TO KRIGING 

Statistic 

measure 

Multilayer 

Perceptron 

Linear 

Regression 

Support 

Vector Reg. 

Abs Max 536.13 164.50 237.19 

Mean -29.05 6.67 -0.28 

Standard dev. 43.97 28.37 26.31 

 
Fig.  5 shows spatial distribution of differences between 

kriging and trained models. Both SVR and MLR models 
exhibited similar behavior in predicting precipitation while 
MP produced slightly different map of differences, especially 
in the northern part of the country. For all three models the 
biggest differences are found in the southern part of the 
country, while the northern part contains smaller and more 
uniform differences. In addition, all trained models formed 
rough surface of precipitation with sharp transition between 
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values of near sites, while kriging [3] created smooth surface, 
which is more natural and appropriate to the underlying 
problem.  

Despite the similar performance on test gauges of SVR and 
MLR models (TABLE II. ) SVR exhibited the smallest 
difference compared to kriging (TABLE III. ). Therefore, Fig.  
6 presents the map of mean annual precipitation for the period 
1961–1990 obtained by SVR model.  

The map shows variation in geographic distribution of 
precipitation. The wettest area is in the mountains at the 
southwest (Prokletije Mountain) and in the southern parts (Šar 
Mountain) of the country with average precipitation exceeding 
1 300 mm. The driest part is the northern part of Serbia which 
extends into the Pannonian Plain with less than 600 mm a 
year. Eastern parts of the country are drier than the western 
parts. Relative uniformity of the precipitation in the northern 
and central parts of the country reflects less complex 
topography. The inconsistency of precipitation in the western, 
southern, and eastern part is a result of the influence of 
complex topography. 

IV. CONCLUSIONS 
 

The main objective of this work is to generate the map of 
average annual precipitation in Serbia for the period of 1961– 
1990 by using machine learning techniques. Based on location 
data, spatial pattern, distance from nearby sea and data of 
nearest gauges four groups of attributes were calculated. 

Multiple Linear Regression and Support Vector 
Regression models provided similar results, both on test 
gauges and compared to kriging, while the results obtained by 
Multilayer Perceptron model were inferior. Our findings 
suggest the linear nature of the precipitation model in Serbia 
for the explained data representation. 

The obtained results would be even better with 
incorporating more additional attributes related to 
precipitation (i.e. direction of the dominant wind). In addition, 
including additional gauges and topographic pattern from 
surrounding countries would probably improve the results and 
reduce the impact of “edge effects”. The produced map 
confirmed the high influence of regional topography on 
average precipitation and described noticeable spatial patterns 
of precipitation values.  
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